Patents Represented by Attorney, Agent or Law Firm William R. Moser
  • Patent number: 5862449
    Abstract: A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: January 19, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Brian L. Bischoff, Douglas E. Fain, John A. D. Stockdale
  • Patent number: 5846041
    Abstract: An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: December 8, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John E. Bevan, Grant W. King
  • Patent number: 5843287
    Abstract: A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points.
    Type: Grant
    Filed: January 19, 1996
    Date of Patent: December 1, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: George G. Wicks, David E. Clark, Rebecca L. Schulz
  • Patent number: 5841651
    Abstract: Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased.
    Type: Grant
    Filed: November 9, 1992
    Date of Patent: November 24, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Chi Yung Fu
  • Patent number: 5836150
    Abstract: A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: November 17, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Ernest J. Garcia
  • Patent number: 5832392
    Abstract: A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: November 3, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Charles W. Forsberg
  • Patent number: 5827903
    Abstract: In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: October 27, 1998
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Curt M. White, Michael S. Quiring, Karen L. Jensen, Richard F. Hickey, Larry D. Gillham
  • Patent number: 5825496
    Abstract: There is provided by this invention an optical displacement sensor that utilizes a reflective target connected to a surface to be monitored to reflect light from a light source such that the reflected light is received by a photoelectric transducer. The electric signal from the photoelectric transducer is then imputed into electronic circuitry to generate an electronic image of the target. The target's image is monitored to determine the quantity and direction of any lateral displacement in the target's image which represents lateral displacement in the surface being monitored.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: October 20, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Robert Edwin Lewis
  • Patent number: 5824602
    Abstract: A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: October 20, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Arthur W. Molvik, Albert R. Ellingboe
  • Patent number: 5825672
    Abstract: The present invention is a method and system for detecting a physical feature of a test piece by detecting a pattern in a signal representing data from inspection of the test piece. The pattern is detected by automated additive decomposition of a digital point-ordered signal which represents the data. The present invention can properly handle a non-periodic signal. A physical parameter of the test piece is measured. A digital point-ordered signal representative of the measured physical parameter is generated. The digital point-ordered signal is decomposed into a baseline signal, a background noise signal, and a peaks/troughs signal. The peaks/troughs from the peaks/troughs signal are located and peaks/troughs information indicating the physical feature of the test piece is output.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: October 20, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: David M. Brudnoy
  • Patent number: 5821201
    Abstract: A (BiPb).sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (Bi223) superconductor with high J.sub.c, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi.sub.2 O.sub.3, PbO, SrCO.sub.3, CaCo.sub.3 and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840.degree. C. The partially synthesized powder is then milled for 1-4 hours before calcining further for another 50 hours at 855.degree. C. to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: October 13, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Nan Chen, Kenneth C. Goretta, Michael T. Lanagan
  • Patent number: 5821705
    Abstract: A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
    Type: Grant
    Filed: June 25, 1996
    Date of Patent: October 13, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: George J. Caporaso, Stephen E. Sampayan, Hugh C. Kirbie
  • Patent number: 5818059
    Abstract: A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: October 6, 1998
    Assignee: United States of America as represented by the United States Department of Energy
    Inventors: Martin J. Coyne, Gregory M. Fiscus, Alfred G. Sammel
  • Patent number: 5817956
    Abstract: A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data.
    Type: Grant
    Filed: December 2, 1997
    Date of Patent: October 6, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Vincent J. Novick
  • Patent number: 5809769
    Abstract: Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.
    Type: Grant
    Filed: November 6, 1996
    Date of Patent: September 22, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: George A. Richards, Randall S. Gemmen
  • Patent number: 5811944
    Abstract: A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: September 22, 1998
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Stephen E. Sampayan, George J. Caporaso, Hugh C. Kirbie
  • Patent number: 5805657
    Abstract: A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: September 8, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Norman B. Heubeck
  • Patent number: 5804965
    Abstract: A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring.
    Type: Grant
    Filed: September 24, 1996
    Date of Patent: September 8, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Robert D. Woolley
  • Patent number: 5799238
    Abstract: A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.
    Type: Grant
    Filed: June 14, 1995
    Date of Patent: August 25, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: George T. Fisher, II, Jeffrey S. Hansen, Laurance L. Oden, Paul C. Turner, Thomas L. Ochs
  • Patent number: H1753
    Abstract: A bimodal propulsion and power nuclear reactor with coaxial power and propulsion cores, each with its own primary propellant/coolant. An inner core region provides electrical power while an outer annular core region surrounding the inner core region has, passageways for heating a gaseous propellant.
    Type: Grant
    Filed: April 29, 1997
    Date of Patent: October 6, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John W. Warren, Abraham Weitzberg