Patents Represented by Attorney William Scott Andes
  • Patent number: 7910173
    Abstract: A thermal barrier coating and deposition process for a component intended for use in a hostile thermal environment, such as the turbine, combustor and augmentor components of a gas turbine engine. The TBC has a first coating portion on at least a first surface portion of the component. The first coating portion is formed of a ceramic material to have at least an inner region, at least an outer region overlying the inner region, and a columnar microstructure whereby the inner and outer regions comprise columns of the ceramic material. The columns of the inner region are more closely spaced than the columns of the outer region so that the inner region of the first coating portion is denser than the outer region of the first coating portion, wherein the higher density of the inner region promotes the impact resistance of the first coating portion.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 22, 2011
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Brett Allen Rohrer Boutwell, Robert William Bruce, Curtis Alan Johnson, Bangalore Aswatha Nagaraj, William Scott Walston, Rudolfo Viguie, Joshua Leigh Miller, Roger Dale Wustman
  • Patent number: 7891938
    Abstract: A multi sensor clearance probe with at least longitudinally and transversely spaced apart first and second sensors operable to measure first and second distances respectively between the sensors and a longitudinally spaced apart rotating rotor. The sensors being operable to measure blade tip clearances between radially outer turbine blade tips and an annular stator shroud circumscribing the blade tips. The blade tips may be squealer tips and the sensors operable to measure the distances between the sensors and tops of squealer tip walls and outwardly facing walls within cavities of the squealer tips. The probe may be operably connected to a controller for sending signals to the controller indicating the first and second distances for controlling an air valve used for active clearance control. Two or more of the probe may be used to determine rotor centerline offset.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: February 22, 2011
    Assignee: General Electric Company
    Inventors: William Lee Herron, Robert Joseph Albers, Rafael Jose Ruiz, Samhita Dasgupta
  • Patent number: 7883311
    Abstract: A rotor assembly for a gas turbine engine is provided. The rotor assembly includes a compressor rotor, a compressor stator coupled upstream from the compressor rotor, and a bearing assembly coupled between the compressor rotor and the compressor stator for supporting the compressor rotor. The bearing assembly includes a pair of foil thrust bearings coupled to a portion of the compressor stator and a pair of spring packs coupled substantially co-axially to the pair of foil thrust bearings. A method of assembling the same is also provided.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: February 8, 2011
    Assignee: General Electric Company
    Inventors: Thomas Ory Moniz, Robert Joseph Orlando
  • Patent number: 7870719
    Abstract: A plasma enhanced rapidly expanded duct system includes a gas turbine engine inter-turbine transition duct having radially spaced apart conical inner and outer duct walls extending axially between a duct inlet and a duct outlet. A conical plasma generator produces a conical plasma along the outer duct wall. An exemplary embodiment of the conical plasma generator is mounted to the outer duct wall and including radially inner and outer electrodes separated by a dielectric material. The dielectric material is disposed within a conical groove in a radially inwardly facing surface of the outer duct wall. An AC power supply is connected to the electrodes to supply a high voltage AC potential to the electrodes.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: January 18, 2011
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Aspi Rustom Wadia, David Glenn Cherry, Scott Michael Carson
  • Patent number: 7854111
    Abstract: An axial flow positive displacement turbine includes inner and outer bodies having offset inner and outer axes respectively extending between a relatively high pressure inlet and a relatively low pressure outlet. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. Each of the bodies has at least two blades. There is one more or one less outer helical blades than inner helical blades. The inner and outer bodies may both be rotatable about inner and outer axes and geared together in a fixed gear ratio. The turbine may have first and second sections with a first twist slope greater than a second twist slope respectively of the inner and outer helical blades.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: December 21, 2010
    Assignee: General Electric Company
    Inventors: Kurt David Murrow, Rollin George Giffin
  • Patent number: 7837914
    Abstract: A preform architecture and process for producing composite materials, and particularly CMC components. The process entails producing a composite component having a matrix material reinforced with a three-dimensional preform. The process includes producing first and second sets of tows containing filaments. Each tow of the first set has a predetermined cross-sectional shape and is embedded within a temporary matrix material formed of a material that is not the matrix material or a precursor of the matrix material. The preform is then fabricated from the first and second sets of tows, in which the second set of tows are transverse to the first set of tows, adjacent tows of the second set are spaced apart to define interstitial regions therebetween, and the cross-sectional shapes of the first set of tows are substantially congruent to the cross-sectional shapes of the interstitial regions so as to substantially fill the interstitial regions.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: November 23, 2010
    Assignee: General Electric Company
    Inventors: Timothy Daniel Kostar, Douglas Melton Carper, Suresh Subramanian, James Dale Steibel
  • Patent number: 7824744
    Abstract: A process and apparatus for depositing a ceramic coating, such as a thermal barrier coating (TBC) for a gas turbine engine component. The process deposits a coating whose composition includes multiple oxide compounds and a carbon-based constituent, e.g., elemental carbon, carbides, and carbon-based gases. The process uses at least one evaporation source to provide multiple different oxide compounds and at least one carbide compound comprising carbon and an element. The evaporation source is evaporated to produce a vapor cloud that contacts and condenses on the component surface to form the ceramic coating, and particularly so that the coating comprises the oxide compounds, an oxide of the element of the carbide compound, and the carbide compound and/or a carbon-containing gas. The process is carried out with an apparatus comprising a coating chamber in which the evaporation source is present, and a device for evaporating the evaporation source.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: November 2, 2010
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Irene Spitsberg, Brett Allen Rohrer Boutwell
  • Patent number: 7819626
    Abstract: A gas turbine engine plasma blade tip clearance control system includes an annular shroud surrounding rotatable blade tips and an annular plasma generator spaced radially outwardly and apart from the blade tips. An exemplary embodiment of the annular plasma generator is mounted to the annular shroud and includes radially inner and outer electrodes separated by a dielectric material disposed within an annular groove in a radially inwardly facing surface of the annular shroud. The plasma generator is operable for producing an annular plasma between the annular shroud and blade tips and an effective clearance produced by the annular plasma between the annular shroud and blade tips that is smaller than a clearance between the annular shroud and blade tips.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: October 26, 2010
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Aspi Rustom Wadia, David Glenn Cherry, Scott Michael Carson
  • Patent number: 7807231
    Abstract: A process for protecting a thermal barrier coating (TBC) on a component used in a high-temperature environment, such as the hot section of a gas turbine engine. The process applies a protective film on the surface of the TBC to resist infiltration of contaminants such as CMAS that can melt and infiltrate the TBC to cause spallation. The process generally entails applying to the TBC surface a metal composition containing at least one metal whose oxide resists infiltration of CMAS into the TBC. The metal composition is applied so as to form a metal film on the TBC surface and optionally to infiltrate porosity within the TBC beneath its surface. The metal composition is then converted to form an oxide film, with at least a portion of the oxide film forming a surface deposit on the TBC surface.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: October 5, 2010
    Assignee: General Electric Company
    Inventors: Mark Daniel Gorman, Bangalore Aswatha Nagaraj, Robert Edward Schafrik
  • Patent number: 7792600
    Abstract: A system for assembling a rotor stack having a plurality of rotor disks may include a measurement system for measuring characteristics of the rotor disks, a computer electronically connected to the measurement system for capturing data from the measurement system, and solid modeling software for creating a virtual stack of the rotor disks optimized for concentricity.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: September 7, 2010
    Assignee: General Electric Company
    Inventors: Karl Lee Borneman, Craig Ronald Ziegler, Jeffrey John Eschenbach, Gregory Patrick Foley
  • Patent number: 7779811
    Abstract: A gas turbine engine control component includes at least one electronic device, electronics such as an integrated circuit associated with the device, and a thermoelectric cooler for cooling the electronics mounted in a compartment. The thermoelectric cooler may be disposed in or on a wall of the compartment with a heat sink connected to a hot side of the thermoelectric cooler and a cold side of the thermoelectric cooler exposed to an interior of the compartment. Data about and/or operating instructions for the device may be stored in memory on the integrated circuit. The data may be calibration information for the device. A bus connector is connected to the integrated circuit for transferring operating instructions and/or data from the integrated circuit out and/or out of the component. A controller or control system incorporating these devices and components have the devices electronically connected to the integrated circuit.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: August 24, 2010
    Assignee: General Electric Company
    Inventors: William James Mailander, Paul Bryant Goodwin
  • Patent number: 7779866
    Abstract: An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall therebetween defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: August 24, 2010
    Assignee: General Electric Company
    Inventors: Leonard Paul Grammel, Jr., David Lance Pennekamp, Ralph Henry Winslow, Jr.
  • Patent number: 7775048
    Abstract: A sprung seal assembly includes a flexible sprung seal having a center section disposed between opposing curved and cantilevered first and second end sections. First and second free edges of the first and second end sections respectively are trapped within a retainer. First and second sliding lugs attached to the first and second free edges respectively are slidably disposed in first and second channels respectively. The first and second free edges are trapped in the retainer by the first and second sliding lugs disposed in the first and second channels between a mounting surface and the retainer attached to the mounting surface. The center section may have a wear strip. The sprung seal assembly may be disposed between a relatively fixed sidewall and a relatively movable flap of a nozzle assembly. The retainer is mounted to the flap and the center section is in sealing engagement with a sealing surface of the sidewall.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: August 17, 2010
    Assignee: General Electric Company
    Inventor: Leonard Paul Grammel, Jr.
  • Patent number: 7775416
    Abstract: A process for heating a braze alloy by microwave radiation so that heating of the alloy is selective and sufficient to cause complete melting of the alloy and permit metallurgical bonding to a substrate on which the alloy is melted, but without excessively heating the substrate so as not to degrade the properties of the substrate. The process entails providing metallic powder particles having essentially the same metallic composition, with at least some of the particles being sufficiently small to be highly susceptible to microwave radiation. A mass of the particles is then applied to a surface of a substrate, after which the mass is subjected to microwave radiation so that the particles within the mass couple with the microwave radiation and sufficiently melt to metallurgically bond to the substrate. The microwave radiation is then interrupted and the mass is allowed to cool, solidify, and form a solid brazement.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: August 17, 2010
    Assignee: General Electric Company
    Inventor: David Edwin Budinger
  • Patent number: 7766599
    Abstract: A plasma boundary layer lifting system includes at least one gas turbine engine vane having a spanwise extending airfoil with an outer surface extending in a chordwise direction between opposite leading and trailing edges and chordwise spaced apart plasma generators for producing a plasma extending in the chordwise direction along the outer surface. Each plasma generator may include inner and outer electrodes separated by a dielectric material disposed within a spanwise extending groove in the outer surface. The airfoil may be hollow having an outer wall and the plasma generators being mounted on the outer wall. A method for operating the system includes forming a plasma extending in the chordwise direction along the outer surface of the airfoil. The method may further include operating the plasma generators in steady state or unsteady modes.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: August 3, 2010
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Aspi Rustom Wadia, David Glenn Cherry, Je-Chin Han
  • Patent number: 7763129
    Abstract: A method of forming a component from a gamma-prime precipitation-strengthened nickel-base superalloy so that, following a supersolvus heat treatment the component characterized by a uniformly-sized grain microstructure. The method includes forming a billet having a sufficiently fine grain size to achieve superplasticity of the superalloy during a subsequent working step. The billet is then worked at a temperature below the gamma-prime solvus temperature of the superalloy so as to form a worked article, wherein the billet is worked so as to maintain strain rates above a lower strain rate limit to control average grain size and below an upper strain rate limit to avoid critical grain growth. Thereafter, the worked article is heat treated at a temperature above the gamma-prime solvus temperature of the superalloy for a duration sufficient to uniformly coarsen the grains of the worked article, after which the worked article is cooled at a rate sufficient to reprecipitate gamma-prime within the worked article.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: July 27, 2010
    Assignee: General Electric Company
    Inventors: David Paul Mourer, Brian Francis Mickle, Shesh Krishna Srivatsa, Eric Scott Huron, Jon Raymond Groh, Kenneth Rees Bain
  • Patent number: 7758303
    Abstract: A FLADE fan assembly includes radially inner and outer airfoils extending radially inwardly and outwardly respectively from an annular shroud circumferentially disposed about a centerline. Inner and outer chords extend between inner and outer leading and trailing edges of inner and outer airfoil cross-sections of the radially inner and outer airfoils respectively. Inner and outer stagger angles between the inner and outer chords respectively at the shroud and the centerline are different. The radially outer airfoils may outnumber the radially inner airfoils and particularly by a ratio in a range of 1.5:1 to about 4:1. Load paths or radii may extend radially through the inner and outer airfoils and through the rotating shroud between the inner and outer airfoils and may pass near or through the inner and outer leading edges and through the inner and outer trailing edges.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: July 20, 2010
    Assignee: General Electric Company
    Inventors: Aspi Rustom Wadia, Alan Glen Turner, Aaron Michael Dziech, Peter Nicholas Szucs, John Jared Decker
  • Patent number: 7739873
    Abstract: A gas turbine engine combustion system includes a plurality of fuel injectors circumferentially disposed around a combustor in a one to one fuel supply relationship with a plurality of fuel nozzle valves, and an electronic controller for controlling the fuel nozzle valves to eliminate and/or reduce hot streaking in response to sensed hot streak conditions. The fuel nozzle valves may be modulating valves. The electronic controller may be used to individually control the fuel nozzle valves. The hot streak conditions may be sensed with temperature sensors such as temperature sensors operably mounted in the combustor. A program in the electronic controller may be used for determining broken or malfunctioning sensors by calculating a combustor temperature and comparing it to measured temperatures from the sensors and comparing the measured fuel pressures in the individual fuel nozzle circuits with the simulated or calculated fuel pressures.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: June 22, 2010
    Assignee: General Electric Company
    Inventors: Kattalaicheri Srinivasan Venkataramani, William Joseph Myers, Jr., Robert Joseph Orlando, Paul Cooker, Ching-Pang Lee
  • Patent number: 7736450
    Abstract: A method for laser shock peening an article, such as a gas turbine engine airfoil, with varying thickness by varying a surface fluence of a laser beam over a laser shock peening surface as a function of the thickness beneath a laser shock peened spot formed by the beam on the surface. The fluence may be equal to the thickness multiplied by a volumetric fluence factor, the volumetric fluence factor being held constant over the laser shock peening surface. The volumetric fluence factor may be in a range of about 1200 J/cm3 to 1800 J/cm3 and more particularly about 1500 J/cm3. The method may include varying energy in the laser beam using a computer program controlling firing of the laser beam. A device such as an optical attenuator external to a laser performing firing may be used to vary the energy.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: June 15, 2010
    Assignee: General Electric Company
    Inventors: Mark Samuel Bailey, Michael Paul Hausfeld, Donald Eugene Williams, Jr., Todd Jay Rockstroh
  • Patent number: 7735350
    Abstract: Determining shot peening intensity by affixing a Almen test strip to a shot peening surface, removing the peened strip from the shot peening surface, measuring an arc height of the shot peened strip, and determining peening intensity on the surface from the measured arc height. The strip may be affixed with an adhesive such as rubber cement and may be a sub-size strip cut from a full size Almen strip. The arc heights of the sub-size strip may be correlated to arc heights of the standard strips. A sub-size strip may be affixed to and a full size standard strip may be mounted on a peening surface of a block and be simultaneously shot peened. Arc heights may be measured on a gage having support means for holding both strips.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: June 15, 2010
    Assignee: General Electric Co.
    Inventors: Peter Gregory Bailey, Gerard Gilmary Burns