Patents Represented by Attorney WilmerHale
  • Patent number: 7760980
    Abstract: A method of fabricating on a substrate an optical detector in an optical waveguide, the method involving: forming at least one layer on a surface of the substrate, said at least one layer comprising SiGe; implanting an impurity into the at least one layer over a first area to form a detector region for the optical detector; etching into the at least one layer in a first region and a second region to form a ridge between the first and second regions, said ridge defining the optical detector and the optical waveguide; filling the first and second regions with a dielectric material having a lower refractive index than SiGe; and after filling the first and second regions with the dielectric material, removing surface material to form a planarized upper surface.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: July 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Lawrence C. West, Gregory L. Wojcik, Francisco A. Leon, Yonah Cho, Andreas Goebel
  • Patent number: 7638645
    Abstract: Metal(IV) tetrakis(N,N?-dialkylamidinates) were synthesized and characterized. Exemplary metals include hafnium, zirconium, tantalum, niobium, tungsten, molybdenum, tin and uranium. These compounds are volatile, highly stable thermally, and suitable for vapor deposition of metals and their oxides, nitrides and other compounds.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: December 29, 2009
    Assignee: President and Fellows of Harvard University
    Inventors: Roy G. Gordon, Jean-Sebastien Lehn, Huazhi Li
  • Patent number: 7536682
    Abstract: A translator apparatus is provided with both program code interpreting and translating functionality, where subject program code is interpreted rather than being translated in those situations where interpretation of the subject program code is determined to be more beneficial. The translator applies an interpreting algorithm to determine whether a basic block of subject program code should be interpreted or translated. A particular subject of instructions supported by the interpreter functionality is initially selected from an entire instruction set for the subject program code. A basic block will be interpreted 1) if all of the instructions within a basic block are determined to be within the subset of instructions supported by the interpreter functionality, and 2) if an execution count of the basic block is below a translation threshold.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: May 19, 2009
    Assignee: International Business Machines Corporation
    Inventors: Gisle Dankel, Gavin Barraclough, Matthew L. Evans
  • Patent number: 7221990
    Abstract: A method, system and medium is provided for enabling improved control systems. An error, or deviation from a target result, is observed for example during manufacture of semiconductor chips. The error within standard deviation is caused by two components: a white noise component and a signal component (such as systematic errors). The white noise component is, e.g., random noise and therefore is relatively non-controllable. The systematic error component, in contrast, may be controlled by changing the control parameters. A ratio between the two components is calculated autoregressively. Based on the ratio and using the observed or measured error, the actual value of the error caused by the systematic component is calculated utilizing an autoregressive stochastic sequence. The actual value of the error is then used in determining when and how to change the control parameters.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: May 22, 2007
    Assignee: Applied Materials, Inc.
    Inventor: Young J. Paik
  • Patent number: 7205228
    Abstract: A method and system of processing a semiconductor substrate includes, in one or more embodiments, depositing a protective layer on the substrate surface comprising a conductive element disposed in a dielectric material; processing the protective layer to expose the conductive element; electrolessly depositing a metallic passivating layer onto the conductive element; and removing at least a portion of the protective layer from the substrate after electroless deposition. In another aspect, a method and system of processing a semiconductor includes depositing a metallic passivating layer onto a substrate surface comprising a conductive element, masking the passivating layer to protect the underlying conductive element of the substrate surface, removing the unmasked passivating layer, and removing the mask from the passivating layer.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: April 17, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Srinivas Gandikota, Mehul Naik, Suketu A. Parikh, Girish A. Dixit
  • Patent number: 7205624
    Abstract: A method of fabricating a detector, the method including forming an island of detector core material on a substrate, the island having a horizontally oriented top end, a vertically oriented first sidewall, and a vertically oriented second sidewall that is opposite said first sidewall; implanting a first dopant into the first sidewall to form a first conductive region that has a top end that is part of the top end of the island; implanting a second dopant into the second sidewall to form a second conductive region that has a top end that is part of the top end of the island; fabricating a first electrical connection to the top end of the first conductive region; and fabricating a second electrical connection to the top end of the second conductive region.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: April 17, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Francisco A. Leon, Lawrence C. West