Patents Represented by Attorney Xiaobing Feng
  • Patent number: 7803976
    Abstract: A process for alkylation of an alkylatable aromatic compound to produce a monoalkylated aromatic compound, comprising the steps of: (a) providing at least one reaction zone having a water content with at least one alkylation catalyst having an activity and a selectivity for said monoalkylated benzene, said alkylation catalyst comprising a porous crystalline molecular sieve of a MCM-22 family material, said MCM-22 family material is characterized by having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 3.57±0.07 and 3.42±0.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: September 28, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Michael C. Clark
  • Patent number: 7794849
    Abstract: A film structure including at least a base layer containing a thermoplastic polymer and at least an outer layer containing a low melting point polymer. Methods of manufacturing the film structure, including the steps of coextruding melts corresponding to the individual layers of the film structure through a die and thereafter: simultaneously biaxially stretching the coextruded film sheet; or sequentially biaxially stretching the coextruded film sheet, wherein the machine-direction orientation (MDO) is performed with a radiant-heated MDO stretcher. An extrusion-coated film structure exhibiting strong bond adhesion, and a method of manufacturing the same are also provided.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: September 14, 2010
    Assignee: ExxonMobil Oil Corporation
    Inventors: Pang-Chia Lu, Robert G. Peet, Benoit Ambroise, Linda Maria Van den Bossche, Nancy Nadine Vanderheyden, François Bosch, Jacques Moriau, Lindsay J. Mendes, Syd R. Wright
  • Patent number: 7699962
    Abstract: The invention relates to methods for separating mixture components such as reactor effluent components. In particular, the invention relates to the use of an extractive agent such as a hydrocarbon in an extractive distillation process to separate monomers such as a C4-C7 isoolefins such as isobutylene from mixtures such as reactor effluents including one or more hydrofluorocarbon(s) (HFC).
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: April 20, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Francis McDonald, Ralph Howard Schatz, Claude André Gautier, Richard Dwight Hembree
  • Patent number: 7659355
    Abstract: The invention relates to novel air barriers made from elastomeric compositions. In particular, the invention relates to novel air barriers such as innerliners, air sleeves, and innertubes made from novel C4 to C7 isoolefin based polymers with new sequence distributions or that are substantially free of long chain branching.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: February 9, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Walter Harvey Waddell, David Yen-Lung Chung
  • Patent number: 7638573
    Abstract: The present invention provides a method to form a nanocomposite including blending a high molecular weight elastomer, a low molecular weight elastomer, and a clay to form a nanocomposite; wherein the high molecular weight elastomer has a weight average molecular weight greater than 250000; wherein the low molecular weight elastomer has a weight average molecular weight less than 150000. In another embodiment, the invention provides a method to form a nanocomposite including the steps of blending a low molecular weight elastomer and a clay to form a first mixture; blending a high molecular weight elastomer and the first mixture to form the nanocomposite; wherein the low molecular weight elastomer has a weight average molecular weight less than 150000; and, wherein the high molecular weight elastomer has a weight average molecular weight greater than 250000.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: December 29, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Hsien-Chang Wang, Ramanan Krishnamoorti, Mun F. Tse, Anthony J. Dias, David Y. Chung, Alan A. Galuska
  • Patent number: 7629397
    Abstract: Provided for herein is a process for separating a hydrocarbon-rubber from a hydrofluorocarbon diluent comprising contacting a polymer slurry comprising the hydrocarbon-rubber dispersed within the hydrofluorocarbon diluent with a hydrocarbon solvent capable of dissolving the hydrocarbon-rubber, to produce a first liquid phase and a second liquid phase, and separating the first liquid phase from the second liquid phase.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: December 8, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael F. McDonald, Scott T. Milner, D. Shaffer Timothy, N. Webb Robert, D. Hembree Richard
  • Patent number: 7501460
    Abstract: The present invention is a process to produce a nanocomposite of a elastomer and organic clay, e.g. an exfoliated clay, suitable for use as an air barrier. The process can include the steps of: (a) contacting a solution (10) of butyl rubber in an organic solvent with a halogen (12) to form a halogenated butyl rubber solution (16); (b) neutralizing the halogenated butyl rubber solution; (c) functionalizing at least a portion (18) of the halogenated butyl rubber; (d) mixing a dispersion (22) of clay with the functionalized butyl rubber (18) to form a masterbatch (26) comprising a polymer-clay nanocomposite; (e) combining the masterbatch (26) with the rest of the halogenated butyl rubber solution (20) to form a second mixture (28); (e) recovering the nanocomposite from the second mixture (28). The nanocomposite so formed has improved air barrier properties and is suitable for use as a tire innerliner or innertube.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: March 10, 2009
    Assignee: ExxonMobile Chemical Patents Inc.
    Inventors: Weiqing Weng, Caiguo Gong, Anthony Jay Dias, Robert Norman Webb, James Peter Stokes
  • Patent number: 7491764
    Abstract: The present invention includes blends of a halogenated elastomer such as a butyl rubber or an interpolymer of, on one embodiment, a C4 to C7 isomonoolefin, a para-methylstyrene and a para-(halomethylstyrene), the interpolymer having been pre-mixed with an exfoliating compound and clay, the entire blend forming a nanocomposite in one embodiment. The clay may or may not have undergone an additional exfoliating treatment prior to blending with the halogenated elastomer. The interpolymer/clay mixture forms a distinct phase in the nanocomposite blend of the invention. The blend of the invention has improved air barrier properties and is suitable as an air barrier.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: February 17, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Anthony Jay Dias, Andy Haishung Tsou, David Yen-Lung Chung, Weiqing Weng
  • Patent number: 7425659
    Abstract: A process for alkylation of an alkylatable aromatic compound to produce a monoalkylated aromatic compound, comprising the steps of: (a) providing at least one reaction zone having a water content with at least one catalyst; (b) supplying the reaction zone with at least one alkylatable aromatic compound and at least one alkylating agent; (c) operating the reaction zone under suitable alkylation or transalkylation conditions, to produce at least one effluent which comprises a monoalkylated aromatic compound and a polyalkylated aromatic compound(s); (d) monitoring the amount of the monoalkylated aromatic compound or the amount of the polyalkylated aromatic compound(s) in the effluent; (e) adjusting the water content in the reaction zone to secure a desired amount of the monalkylated aromatic compound or the polyalkylated aromatic compound(s) in the effluent, the water content in the reaction zone being in a range from about 1 wppm to about 900 wppm; and wherein the polyalkylated aromatic compound(s) produced is
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: September 16, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Michael C. Clark
  • Patent number: 7390933
    Abstract: In a process for reducing the Bromine Index of a feed containing a linear alkylbenzene and bromine-reactive olefinic hydrocarbon contaminants, the feed is contacted under conditions effective to remove bromine-reactive olefinic hydrocarbon contaminants with a catalyst comprising zeolite Y catalyst having an alpha value of about 2 to about 30. The feed will normally also contain benzene and linear paraffin remaining from the alkylation process used to produce the linear alkylbenzene.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: June 24, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Frederick Y. Lo, David L. Stern, Ronald J. Cimini, James L. Propp
  • Patent number: 7381676
    Abstract: This disclosure relates to a catalyst composition comprising (a) a crystalline MCM-49 molecular sieve; and (b) a binder comprising at least 1 wt. % of a titanium compound. In one aspect of this disclosure, the titanium compound comprises at least one of titanium oxide, titanium hydroxide, titanium sulfate, titanium phosphate, or any combination thereof. In another aspect of this disclosure, the catalyst composition further comprises a crystalline MCM-22 family molecular sieve comprising at least one of MCM-22, MCM-36, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-30, PSH-3, ERB-1, SSZ-25, or any combination thereof. In other embodiments, this disclosure relates to a process for preparing the catalyst composition of this disclosure, the process comprises (a) providing the crystalline MCM-49 molecular sieve and the binder comprising at least 1 wt. % of a titanium compound to form a mixture; and (b) forming the mixture into the catalyst composition. In a preferred embodiment, the forming step comprises extruding.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: June 3, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Patent number: 7328733
    Abstract: Halogenated isobutylene-co-alkylstyrene polymer, preferably halogenated isobutylene-co-methylstyrene polymer, even more preferably brominated isobutylene-co-paramethylstyrene polymer (BIMS), blends thereof, and blends with a second rubber, show improved heat resistance compared to butyl inner tube compositions, and retain the superior barrier properties of butyl inner tube compositions versus inner tube compositions with butyl/EP blends.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: February 12, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donald Sheley Tracey, Ilan Duvdevani, Hsien-Chang Wang
  • Patent number: 7329697
    Abstract: The present invention includes compositions suitable for tire treads or sidewalls and other articles where abrasion resistance and flexibility are desirable. The invention includes a tire tread or sidewall made by combining a filler; a sulfur cure system; optionally at least one secondary rubber; and at least one halogenated terpolymer of C4 to C8 isoolefin derived units, C4 to C14 multiolefin derived units, and p-alkylstyrene derived units. Examples of suitable fillers include carbon black, silica, and combinations thereof. The present invention also includes a method of producing an elastomeric terpolymer composition comprising combining in a diluent C4 to C8 isoolefin monomers, C4 to C14 multiolefin monomers, and p-alkylstyrene monomers in the presence of a Lewis acid and at least one initiator to produce the terpolymer.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: February 12, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Walter Harvey Waddell, David Yen-Lung Chung
  • Patent number: 7238636
    Abstract: A method is disclosed for modifying a catalytic molecular sieve for shape-selective hydrocarbon conversions comprises: a) selectivating said catalytic molecular sieve by contacting with a silicon-containing selectivating agent; and b) calcining the selectivated catalytic molecular sieve at high temperature calcination conditions comprising temperatures greater than 700° C., which conditions are sufficient to reduce acid activity as measured by alpha value and increase diffusion barrier of said catalytic molecular sieve as measured by the rate of 2,3-dimethylbutane uptake, as compared to the selectivated catalyst. Catalytic molecular sieves thus prepared, such as silica-bound ZSM-5, and their use in hydrocarbon conversion processes such as aromatics isomerization, e.g., xylene isomerization, ethylbenzene conversion and aromatics disproportionation, e.g., toluene disproportionation are also disclosed.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: July 3, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey S. Beck, William G. Borghard, Arthur W. Chester, Carrie L. Kennedy, David L. Stern
  • Patent number: 7226962
    Abstract: The invention provides a method for increasing the viscosity of halogenated (brominated) elastomeric copolymers of a C4 to C7 isomonoolefin (isobutylene) and a para-alkylstryrene (p-methylstyrene) by mixing the copolymer with a silica or clay particulate filler which has been contacted with an aminosilane containing at least one C1 to C4 alkoxy group and at least one primary, secondary or tertiary amine group. The resulting elastomer compositions are used to prepare thermoplastic elastomer blend compositions, containing more finely dispersed elastomers which results in compositions having improved mechanical properties.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: June 5, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Andy H. Tsou, Hsien-Chang Wang, Kenneth O. McElrath, Ilan Duvdevani, Michael K. Lyon, Mun Fu Tse
  • Patent number: 7186873
    Abstract: A process is provided for the production of xylenes from reformate by reactive distillation. The process is carried out by methylating the benzene/toluene present in the reformate in a reactive distillation zone and under reactive distillation conditions to produce a resulting product having a higher xylenes content than the reformate. Greater than equilibrium amounts of para-xylene can be produced by the process.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: March 6, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Xiaobing Feng, John Scott Buchanan, Robert A. Crane, Jihad M. Dakka, Larry L. Iaccino, Gary D. Mohr
  • Patent number: 7176339
    Abstract: A process is provided for the production of xylenes from reformate. The process is carried out by methylating under conditions effective for the methylation, the benzene/toluene present in the reformate outside the reforming loop, to produce a resulting product having a higher xylenes content than the reformate. Greater than equilibrium amounts of para-xylene can be produced by the process.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: February 13, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Jeevan S. Abichandani, John Scott Buchanan, Robert A. Crane, Jihad M. Dakka, Xiaobing Feng, Shifang L. Luo, Gary D. Mohr
  • Patent number: 7119239
    Abstract: A process is provided for the production of xylenes from reformate. The process is carried out by methylating under conditions effective for the methylation, the benzene/toluene present in the reformate outside the reforming loop, to produce a resulting product having a higher xylenes content than the reformate. Greater than equilibrium amounts of para-xylene can be produced by the process.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: October 10, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David L. Johnson, Robert G. Tinger, Robert A. Ware, John S. Buchanan, Xiaobing Feng, Shifang Luo, Gary D. Mohr
  • Patent number: 7115538
    Abstract: An ethylbenzene conversion catalyst is described which comprises a molecular sieve and a hydrogenation metal, wherein the catalyst exhibits a benzene hydrogenation activity at 100° C. of less than about 100 and a metal dispersion, as measured by hydrogen chemisorption, greater than 0.4 and wherein the molecular sieve is steamed to an alpha value of less than 400 prior to incorporation of the palladium with the molecular sieve.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: October 3, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Robert A. Crane, Doron Levin, Daria N. Lissy, Gary D. Mohr, David L. Stern
  • Patent number: 7074739
    Abstract: The invention relates to a process for producing alkylated aromatic hydrocarbons, preferably with an oxygen or sulfur containing alkylating agent, in the presence of a multi-component molecular sieve catalyst composition that includes a molecular sieve and an active metal oxide. The invention is also directed to methods of making and formulating the multi-component molecular sieve catalyst composition useful in producing alkylated aromatics.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: July 11, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad Mohammed Dakka, James Clarke Vartuli, John Scott Buchanan, Jose G. Santiesteban, Doron Levin