Patents Assigned to 10X GENOMICS, INC.
  • Publication number: 20210115415
    Abstract: Disclosed herein, are compositions, methods, and kits comprising engineered reverse transcription enzymes that exhibit several desired properties such as thermal stability, processive reverse transcription, non-templated base addition, and template switching ability. The engineered reverse transcription enzymes described herein demonstrate unexpectedly higher resistance to cell lysate inhibition, greater ability to capture full-length mRNA transcripts, and demonstrate improved results in small reaction volumes as compared to other engineered reverse transcription enzymes.
    Type: Application
    Filed: December 7, 2020
    Publication date: April 22, 2021
    Applicant: 10X Genomics, Inc.
    Inventors: Josephine Lee, Samuel Marrs, Geoffrey McDermott, Francesca Meschi, Luz Montesclaros, Katherine Pfeiffer, Joseph Francis Shuga, Jessica Michele Terry, Solongo B. Ziraldo
  • Patent number: 10954562
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: March 23, 2021
    Assignee: 10X GENOMICS, INC.
    Inventors: Phillip Belgrader, Josephine Harada, Tarjei Sigurd Mikkelsen, Katherine Pfeiffer, Serge Saxonov, John R. Stuelpnagel
  • Publication number: 20210053063
    Abstract: The invention provides kits, devices, methods, and systems for forming droplets or particles and methods of their use. The devices may be used to form droplets of a size suitable for utilization as microscale chemical reactors, e.g., for genetic sequencing. In general, droplets are formed in a device by flowing a first liquid through a channel and into a droplet formation region including a second liquid, i.e., the continuous phase. The invention allows for more efficient recovery of droplets or processed droplets.
    Type: Application
    Filed: August 20, 2020
    Publication date: February 25, 2021
    Applicant: 10X Genomics, Inc.
    Inventors: Mohammad Rahimi LENJI, Rajiv BHARADWAJ
  • Patent number: 10928386
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization from a single cell. Such polynucleotide processing may be useful for a variety of applications. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, epigenetic information (e.g., accessible chromatin, DNA methylation), and RNA molecules (e.g., mRNA or CRISPR guide RNAs). In some cases, the disclosed methods comprise analysis of analytes from a cell using a cell bead.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: February 23, 2021
    Assignee: 10X GENOMICS, INC.
    Inventors: Zahra Kamila Belhocine, Andrew D. Price, Michael Schnall-Levin
  • Patent number: 10927370
    Abstract: Methods and systems for sample preparation techniques that allow amplification (e.g., whole genome amplification) and sequencing of chromatin accessible regions of single cells are provided. The methods and systems generally operate by forming or providing partitions (e.g., droplets) including a single biological particle and a single bead comprising a barcoded oligonucleotide. The preparation of barcoded next-generation sequencing libraries prepared from a single cell is facilitated by the transposon-mediated transposition and fragmentation of a target nucleic acid sequence. The methods and systems may be configured to allow the implementation of single-operation or multi-operation chemical and/or biochemical processing within the partitions.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: February 23, 2021
    Assignee: 10X GENOMICS, INC.
    Inventors: Zahra Kamila Belhocine, Geoffrey McDermott, Francesca Meschi, Xinying Zheng
  • Patent number: 10907207
    Abstract: Aspects of the present invention include analyzing nucleic acids from single cells using methods that include using tagged polynucleotides containing multiplex identifier sequences.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: February 2, 2021
    Assignee: 10X Genomics, Inc.
    Inventors: Sydney Brenner, Gi Mikawa, Robert Osborne, Andrew Slatter
  • Patent number: 10898900
    Abstract: Devices, systems, and their methods of use, for generating droplets are provided. One or more geometric parameters of a microfluidic channel can be selected to generate droplets of a desired and predictable droplet size.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: January 26, 2021
    Assignee: 10X Genomics, Inc.
    Inventors: Rajiv Bharadwaj, Anthony Makarewicz, Bill Kengli Lin
  • Patent number: 10876147
    Abstract: The present disclosure provides methods of generating supports (e.g., beads) comprising barcode molecules coupled thereto. A barcode molecule coupled to a support may comprise a barcode sequence and a functional sequence. A barcode molecule may be generated using two or more ligation reactions in a combinatorial fashion. A support comprising two or more different barcode molecules may be useful for analyzing or processing one or more analytes such as nucleic acid molecules, proteins, and/or perturbation agents.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: December 29, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Zachary Bent, Elliott Meer, Daniel Riordan, Paul Ryvkin, Niranjan Srinivas, Jessica Terry
  • Publication number: 20200392564
    Abstract: The present disclosure provides systems and methods for making a hydrogel comprising a cell, cell nucleus, or one or more components derived from a cell or cell nucleus. A method for making a hydrogel may comprise providing a cell or cell nucleus, a first polymer, wherein the first polymer comprises a plurality of first crosslink precursors, each of the plurality of first crosslink precursors comprising an azide group; providing a second polymer, wherein the second polymer comprises a plurality of second crosslink precursors, each of the plurality of second crosslink precursors comprising an alkyne group; and crosslinking the first polymer and the second polymer via a reaction between a first section of the first crosslink precursors and a second section of the second crosslink precursors, thereby providing the hydrogel comprising the cell or cell nucleus.
    Type: Application
    Filed: September 1, 2020
    Publication date: December 17, 2020
    Applicant: 10X Genomics, Inc.
    Inventors: Joshua DELANEY, Shalini GOHIL, Christopher HINDSON, Adam LOWE, Andrew D. PRICE, Joseph Francis SHUGA
  • Patent number: 10858702
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: December 8, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Michael Ybarra Lucero, Tarjei Sigurd Mikkelsen, Katherine Pfeiffer, Stephane Claude Boutet
  • Patent number: 10854315
    Abstract: Systems and methods for determining structural variation and phasing using variant call data obtained from nucleic acid of a biological sample are provided. Sequence reads are obtained, each comprising a portion corresponding to a subset of the test nucleic acid and a portion encoding a barcode independent of the sequencing data. Bin information is obtained. Each bin represents a different portion of the sample nucleic acid. Each bin corresponds to a set of sequence reads in a plurality of sets of sequence reads formed from the sequence reads such that each sequence read in a respective set of sequence reads corresponds to a subset of the nucleic acid represented by the bin corresponding to the respective set. Binomial tests identify bin pairs having more sequence reads with the same barcode in common than expected by chance. Probabilistic models determine structural variation likelihood from the sequence reads of these bin pairs.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: December 1, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks, Michael Schnall-Levin, Xinying Zheng, Mirna Jarosz, Serge Saxonov, Kristina Giorda, Patrice Mudivarti, Heather Ordonez, Jessica Terry, William Haynes Heaton
  • Patent number: 10844372
    Abstract: Methods and systems for sample preparation techniques that allow amplification (e.g., whole genome amplification) and sequencing of chromatin accessible regions of single cells are provided. The methods and systems generally operate by forming or providing partitions (e.g., droplets) including a single biological particle and a single bead comprising a barcoded oligonucleotide. The preparation of barcoded next-generation sequencing libraries prepared from a single cell is facilitated by the transposon-mediated transposition and fragmentation of a target nucleic acid sequence. The methods and systems may be configured to allow the implementation of single-operation or multi-operation chemical and/or biochemical processing within the partitions.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: November 24, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Zahra Kamila Belhocine, Geoffrey McDermott, Francesca Meschi, Xinying Zheng
  • Patent number: 10837047
    Abstract: The present disclosure provides systems and methods for making a hydrogel comprising a cell, cell nucleus, or one or more components derived from a cell or cell nucleus. A method for making a hydrogel may comprise providing a cell or cell nucleus, a first polymer, wherein the first polymer comprises a plurality of first crosslink precursors, each of the plurality of first crosslink precursors comprising an azide group; providing a second polymer, wherein the second polymer comprises a plurality of second crosslink precursors, each of the plurality of second crosslink precursors comprising an alkyne group; and crosslinking the first polymer and the second polymer via a reaction between a first section of the first crosslink precursors and a second section of the second crosslink precursors, thereby providing the hydrogel comprising the cell or cell nucleus.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: November 17, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Joshua Delaney, Shalini Gohil, Christopher Hindson, Adam Lowe, Andrew D. Price, Joseph Francis Shuga
  • Patent number: 10839939
    Abstract: Methods, processes, and particularly computer implemented processes and computer program products are provided for use in the analysis of genetic sequence data. The processes and products are employed in the assembly of shorter nucleic acid sequence data into longer linked and preferably contiguous genetic constructs, including large contigs, chromosomes and whole genomes.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: November 17, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Michael Schnall-Levin, Iain MacCallum
  • Patent number: 10829815
    Abstract: Provided herein are methods and systems for processing a nucleic acid molecule from a biological particle (e.g., cell). A plurality of partitions (e.g., droplets) may be generated such that partitions of the plurality of partitions each include a biological particle (e.g., cell) comprising the nucleic acid molecule and a particle (e.g., bead). The partitions can be processed (e.g., imaged) to obtain one or more physical and/or optical properties of their respective biological particles. The nucleic acid molecules included in the partitions can be barcoded and sequenced (e.g., using nucleic acid barcode molecules coupled to the particles of the partitions) to generate nucleic acid sequences of the nucleic acid molecules. The nucleic acid sequences can be electronically associated with the one or more optical properties of the biological particles.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: November 10, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Rajiv Bharadwaj, Serge Saxonov
  • Patent number: 10821442
    Abstract: Devices, systems, and their methods of use, for generating droplets are provided. One or more geometric parameters of a microfluidic channel can be selected to generate droplets of a desired and predictable droplet size.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: November 3, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Rajiv Bharadwaj, Anthony Makarewicz, Bill Kengli Lin
  • Patent number: 10816543
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization from one or more cells. Such polynucleotide processing may be useful for a variety of applications, including characterization of major histocompatibility complex (MHC) molecules. The compositions, methods, systems, and devices disclosed herein generally describe peptides and barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing MHC molecules from one or more cells.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: October 27, 2020
    Assignee: 10X GENOMICS, INC.
    Inventor: Katherine Pfeiffer
  • Patent number: 10815525
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 27, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Michael Ybarra Lucero, Tarjei Sigurd Mikkelsen, Katherine Pfeiffer, Stephane Claude Boutet
  • Patent number: 10795731
    Abstract: Methods, nontransitory computer readable media, and systems are disclosed for servicing a job queue. Each job has node resource requirements. Composite job memory and processor requirements is determined from these requirements. Nodes that satisfy these requirements are identified by obtaining, for each class of a plurality of node classes: an availability score, a number of processors, and a memory capability. A request for nodes of a class is made when a demand score for the class satisfies the class availability score. An acknowledgement and updated availability score is received upon request acceptance. A declination is received upon request rejection. The submitting and receiving is performing multiple times, if needed, until each class has been considered for a request or sufficient acknowledgements are received to satisfy the composite requirements of the jobs. Each node in the cluster draws jobs from the queue subject to the collective requirements of the drawn jobs.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: October 6, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: David Luther Alan Stafford, Adam David Azarchs, Alexander Y. Wong
  • Patent number: 10793905
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: October 6, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Zachary Bent, Josephine Harada, Christopher Hindson, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Solongo Batjargal Ziraldo