Abstract: A dual cam phaser for an internal combustion engine, the dual cam phaser including a stator which is drivable by a crankshaft; a rotor which rotatable relative to the stator; a first camshaft; a second camshaft; and a mechanical switching element which is connected to the first camshaft and the second camshaft, wherein the first camshaft and the second camshaft are arranged coaxial with one another, wherein the first camshaft or the second camshaft is connected with the rotor to rotate together with the rotor, and wherein a phase difference between the first camshaft and the second is adjustable by the mechanical switching element.
Abstract: It is possible to improve the CQI reception performance even when a delay is caused in a propagation path, a transmission timing error is caused, or a residual interference is generated between cyclic shift amounts of different ZC sequences. For the second symbol and the sixth symbol of the ACK/NACK signal which are multiplexed by RS of CQI, (+, +) or (?, ?) is applied to a partial sequence of the Walsh sequence. For RS of CQI transmitted from a mobile station, + is added as an RS phase of the second symbol and ? is added as an RS phase of the sixth symbol. A base station (100) receives multiplexed signals of ACK/NACK signals and CQI signals transmitted from a plurality of mobile stations. An RS synthesis unit (119) performs synthesis by aligning the RS phase of CQI.
Abstract: The present disclosure provides methods, systems, and media for quantum computing, including allowing access to quantum ready and/or quantum enabled computers in a distributed computing environment (e.g., the cloud). Such methods and systems may provide optimization and computational services. Methods and systems of the present disclosure may enable quantum computing to be relatively and readily scaled across various types of quantum computers and users at various locations, in some cases without the need for users to have a deep understanding of the resources, implementation or the knowledge that may be required for solving optimization problems using a quantum computer. Systems provided herein may include user interfaces that enable users to perform data analysis in a distributed computing environment while taking advantage of quantum technology in the backend.
Abstract: An electrically conductive screen-printable PTC ink composition with low inrush current and high NTC onset temperature, consisting of at least two different polymers, polymer-1 and polymer-2; wherein the melting temperature difference between polymer-1 and polymer-2 must be greater than 50° C., and the mechanical strength of polymer-1 as expressed by Young's modulus must be greater than 200 MPa.
Abstract: In a terminal, a control unit transmits a bundle response signal using a resource in a basic region of an uplink control channel in an uplink unit band of a unit band group when no error is detected in each of a plurality of pieces of downlink data of the unit band group, the uplink control channel in the uplink unit band being associated with a downlink control channel in a basic unit band that is a downlink unit band in which a broadcast channel signal including information relating to the uplink unit band is transmitted, and the control unit transmits the bundle response signal using a resource in an additional region of the uplink control channel when an error is detected in each of the plurality of pieces of downlink data.
Abstract: The present disclosure provides methods, systems, and media for allowing access to quantum ready and/or quantum enabled computers in a distributed computing environment (e.g., the cloud). Such methods and systems may provide optimization and computational services on the cloud. Methods and systems of the present disclosure may enable quantum computing to be relatively and readily scaled across various types of quantum computers and users at various locations, in some cases without the need for users to have a deep understanding of the resources, implementation or the knowledge that may be required for solving optimization problems using a quantum computer. Systems provided herein may include user interfaces that enable users to perform data analysis in a distributed computing environment while taking advantage of quantum technology in the backend.
Abstract: The present invention provides a plastic article containing suspended photochromic dye molecules, and the said suspended photochromic dye molecules suspended in liquid micro-droplets of a suspension medium, and the said micro-droplets of the said suspension medium containing the said suspended photochromic dye molecules are embedded inside a solid polymer matrix, and the said solid polymer matrix is formed by polymerization of liquid polymer precursors. The invented structure of a plastic article containing suspended photochromic dye molecules exhibits fast response time and enhances photochromic performance.
Abstract: A photolithography system based on a high step slope may include a depositing unit configured to manufacture a sacrificial layer having high step slope on a substrate. The system may also include a coating unit configured to coat a photoresist layer on the sacrificial layer by performing a spin-on PR coating process to form a photolithographic layer. The system may further include a photolithography unit configured to perform one or more photolithography processes to the photolithographic layer. The photolithography unit may comprise a plurality of masks of compensation patterns. The compensation pattern may comprise a slope-top compensation pattern and a slope compensation pattern.
Abstract: A mobile terminal includes circuitry, a transmitter and a receiver. The circuitry, in operation, generates a CQI for each subcarrier (SC) group of multiple subcarrier groups, a plurality of subcarriers consecutive in a frequency domain being grouped into the multiple subcarrier groups. The transmitter, in operation, reports first respective CQIs of the multiple SC groups in inconsecutive time resources based on a first period, and reports, based on a second period, second respective CQIs of the multiple SC groups in inconsecutive time resources based on the first period, the second period being longer than the first period. The receiver, in operation, receives information indicative of the first period.
Abstract: The invention relates to a process for preparing methyl mercaptan from a mixture of carbon oxide, hydrogen sulfide and hydrogen, in the presence of a catalyst based on molybdenum and potassium supported on zirconia, said catalyst not comprising any promoter.
Type:
Application
Filed:
December 20, 2018
Publication date:
October 22, 2020
Applicants:
Arkema France, Université Lille 1 - Sciences et Technologies, Centre National De La Recherche Scientifique-CNRS
Inventors:
Georges FRÉMY, Hélori SALEMBIER, Carole LAMONIER, Pascal BLANCHARD
Abstract: A shielding element comprises a rigid substrate and at least one electrically conductive two-dimensional structure which is placed on one of the faces of the substrate. The substrate and the electrically conductive two-dimensional structure are such that the shielding element has optical-transmission and shielding-efficiency values at least one of which varies between two zones of the shielding element. Such a shielding element enables easier assembly of a detection system comprising multiple optical sensors.
Type:
Application
Filed:
May 22, 2017
Publication date:
October 22, 2020
Applicants:
SAFRAN ELECTRONICS & DEFENSE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - CNRS -, UNIVERSITE DE RENNES 1
Abstract: Implantable devices for continuously monitoring vascular lumen dimensions, in particular in the inferior vena cava (IVC) for determining heart failure status of a patient. Related therapy systems as well as monitoring and therapy methods are also disclosed. Devices include active or passive marker elements placed in contact with, adhered to or injected into the vessel wall to generate or reflect signals from which lumen diameter may be determined. Disclosed devices may be fully implantable and self-contained including capabilities for wirelessly communication monitored parameters.
Type:
Grant
Filed:
October 2, 2018
Date of Patent:
October 20, 2020
Assignee:
Foundry Innovation & Research 1, Ltd.
Inventors:
Hanson S. Gifford, III, Mark E. Deem, Douglas S. Sutton, Vijaykumar Rajasekhar
Abstract: In a picture coding method for generating a coded signal corresponding to each picture by coding a plurality of coded signals, a switching picture which is capable of switching a plurality of coded signals and subsequent pictures of the switching picture can refer to only a group of pictures of the same time in the coded signals. More specifically, the case where picture numbers of an adjacent picture of an S picture and the S picture are not continuous is not considered as an error.