Abstract: The techniques described herein relate generally to reconfigurable support pads for fabric image transfers. Specifically, according to one or more embodiments of the present disclosure, reconfigurable support pads are provided for fabric image transfers (e.g., silk screening, heat transfer, direct-to-garment printing, etc.). In particular, the techniques herein provide for various adjustable configurations of portions of the fabric substrate support, which may be changed for different thicknesses of garments, and more particularly, that allow for varied thicknesses found on the same garment. For example, by configuring the support in a first “flat” configuration, a plain tee shirt may lay flat, and then configuring the support in a second “two-tiered” configuration, with one portion lower (or higher) than the other, allows for a hoodie with a thicker pocket portion at the “belly” of the garment to also lay flat.
Type:
Grant
Filed:
June 5, 2019
Date of Patent:
February 7, 2023
Assignee:
240 Tech LLC
Inventors:
Kris Otto Friedrich, Blair Kristine Dorsey
Abstract: In one embodiment, a high-speed, closed-loop fabric printer comprises a plurality of consecutive stations that can be managed by a single operator. In particular, shirts or other fabric garments may be individually loaded and secured on a pallet by an operator, and the loaded pallets may then cycle through a plurality of unmanned stations positioned along a contiguous path (e.g., oval). The stations may be configured for pretreating the fabric surface, drying and pressing the pretreated fabric with heat, and then inkjet printing a selected image, among others. In this manner, a “wet-to-dry-to-wet” direct to garment (DTG) printing process may thus be achieved, along with optimal controls for maximum adaptability. Furthermore, due to the closed-loop design, a recently printed fabric product returns to the operator to be unloaded at the position in which a new unprinted fabric is loaded, allowing for increased throughput and minimal operator requirements.
Abstract: In one embodiment, a high-speed, closed-loop fabric printer comprises a plurality of consecutive stations that can be managed by a single operator. In particular, shirts or other fabric garments may be individually loaded and secured on a pallet by an operator, and the loaded pallets may then cycle through a plurality of unmanned stations positioned along a contiguous path (e.g., oval). The stations may be configured for pretreating the fabric surface, drying and pressing the pretreated fabric with heat, and then inkjet printing a selected image, among others. In this manner, a “wet-to-dry-to-wet” direct to garment (DTG) printing process may thus be achieved, along with optimal controls for maximum adaptability. Furthermore, due to the closed-loop design, a recently printed fabric product returns to the operator to be unloaded at the position in which a new unprinted fabric is loaded, allowing for increased throughput and minimal operator requirements.