Patents Assigned to 3SAE Technologies, Inc.
  • Patent number: 11926553
    Abstract: Provided is a system for and a method of processing an optical fiber, such as tapering an optical fiber. The method includes receiving fiber parameters defining characteristics of an optical fiber, modeling an idealized fiber based on the fiber parameters to establish modeled data, and establishing processing parameters. A processing operation is performed on the optical fiber according to the processing parameters to produce a resultant fiber. Aspects of the resultant fiber are measured to establish measured data. The measured data and the modeled data are normalized to a common axis and a difference between the two is determined. The processing parameters are adjusted based on the differences.
    Type: Grant
    Filed: March 27, 2023
    Date of Patent: March 12, 2024
    Assignee: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert G. Wiley, John Lower, Brett Clark
  • Patent number: 11681100
    Abstract: A multi-axis positioning stage or positioner includes a top plate supported and manipulatable by a plurality of prismatic joint actuators. Each actuator includes an actuator joint having four or five Degrees of Freedom (DOF) with the top plate. When one or more of the actuators extends or contracts, the pivot points, or four or five DOF actuator joints, of the remaining actuators are allowed to shift to move the top plate. The actuators can be disposed between at least one base plate or base structure, and can be fixed thereto.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: June 20, 2023
    Assignee: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert Wiley, Brett Clark
  • Patent number: 11613494
    Abstract: Provided is a system for and a method of processing an optical fiber, such as tapering an optical fiber. The method includes receiving fiber parameters defining characteristics of an optical fiber, modeling an idealized fiber based on the fiber parameters to establish modeled data, and establishing processing parameters. A processing operation is performed on the optical fiber according to the processing parameters to produce a resultant fiber. Aspects of the resultant fiber are measured to establish measured data. The measured data and the modeled data are normalized to a common axis and a difference between the two is determined. The processing parameters are adjusted based on the differences.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: March 28, 2023
    Assignee: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert G. Wiley, John Lower, Brett Clark
  • Patent number: 11269143
    Abstract: A parallel position manipulator includes a top plate, a baseplate and a plurality of prismatic joint actuators. Each actuator includes an actuator joint having five Degrees of Freedom (DOF) at either the base plate or the top plate. When one or more of the actuators extends or contracts, the pivot points, or five DOF actuator joint, of the remaining actuators are allowed to shift in any axis other than that actuator's primary axis of motion.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: March 8, 2022
    Assignee: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert Wiley, Brett Clark
  • Publication number: 20200326486
    Abstract: A torsion-free fiber clamp may employ a substrate in combination with an epoxy, for example, or the like, to clamp at least one fiber. The substrate may be relatively flat or it may include a groove into which the fiber is placed. The epoxy may be a relatively fast-acting adhesive. The clamp may be employed in a fiber cleaving system and operation wherein it provides a substantially torsion-free clamp of the at least one optical fiber to provide a low cleave angle.
    Type: Application
    Filed: May 30, 2017
    Publication date: October 15, 2020
    Applicant: 3SAE Technologies, Inc.
    Inventors: John LOWER, Robert WILEY, Brett CLARK, Jason TROYER, Kyle SHAHAN
  • Patent number: 10746928
    Abstract: A parallel position manipulator includes a top plate, a baseplate and a plurality of prismatic joint actuators. Each actuator includes an actuator joint having five Degrees of Freedom (DOF) at either the base plate or the top plate. When one or more of the actuators extends or contracts, the pivot points, or five DOF actuator joint, of the remaining actuators are allowed to shift in any axis other than that actuator's primary axis of motion.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: August 18, 2020
    Assignee: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert Wiley, Brett Clark, Jason Troyer, John Lower, Adam Jenkins, Clyde Troutman, Johnny Issa
  • Patent number: 10481330
    Abstract: An electrical discharge, suitable for heating optical fibers for processing, is made in a controlled partial vacuum, such that saturation of available ionizable gas molecules is reached. The workpiece temperature is thereby made to be a stably controlled function of the absolute air pressure and is insensitive to other conditions. A system and method accomplishing the foregoing are provided.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: November 19, 2019
    Assignee: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert G. Wiley, Brett Clark, John Lower, Jason Troyer, Clyde J. Troutman
  • Patent number: 10429587
    Abstract: A parallel position manipulator includes a top plate, a baseplate and a plurality of prismatic joint actuators. Each actuator includes an actuator joint having five Degrees of Freedom (DOF) at either the base plate or the top plate. When one or more of the actuators extends or contracts, the pivot points, or five DOF actuator joint, of the remaining actuators are allowed to shift in any axis other than that actuator's primary axis of motion.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: October 1, 2019
    Assignee: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert Wiley, Brett Clark, Jason Troyer, John Lower, Adam Jenkins, Clyde Troutman, Johnny Issa
  • Patent number: 9952386
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 24, 2018
    Assignee: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Patent number: 9632252
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: April 25, 2017
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Patent number: 9554420
    Abstract: An electrical discharge, suitable for heating optical fibers for processing, is made in a controlled partial vacuum, such that saturation of available ionizable gas molecules is reached. The workpiece temperature is thereby made to be a stably controlled function of the absolute air pressure and is insensitive to other conditions. A system and method accomplishing the foregoing are provided.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: January 24, 2017
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, John Lower, Jason Troyer, Clyde J. Troutman
  • Patent number: 9526129
    Abstract: Provided is a thermal mechanical diffusion system and method. In accordance with the present invention, one end of a fiber under tension is vibrated while a portion of the fiber is heated. A push-pull action of one end of the fiber forces increased (or rapid) diffusion of dopants in the portion of the fiber that is in a heat zone, which receives the heat. By controlling the amplitude and frequency of the vibration, a diffusion profile of one or more fibers can be dictated with precision. Heat sources having narrower thermal profiles can enable greater precision in dictating the diffusion profile. As an example, this can be particularly useful for creating a diffusion taper within a fiber to be spliced, where the taper is a result of thermal expansion of the fiber core. Diffusion can occur much more rapidly than is typical.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: December 20, 2016
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, John Lower
  • Patent number: 9377584
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 28, 2016
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Patent number: 9086539
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: July 21, 2015
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Patent number: 9028158
    Abstract: A multi-stage fiber processing system comprises first and second fiber holders configured to hold respective portions of at least one fiber and a plurality of heat sources arranged between the first and second fiber holders and configured to provide a heat zone that axially extends about the at least on fiber. The first and second fiber holders can be configured to translate away from each other for tapering. The plurality of heat sources can include two 3 electrode heat sources that deliver an extended, substantially isothermic heat field axially about the fiber. All but one heat source can be turned off to splice the fiber. The two 3 electrode heat sources can generate 9 arcs to from the heat zone, wherein arcs between the two 3 electrode heat sources can be rotated about the at least one fiber.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: May 12, 2015
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, John Lower
  • Publication number: 20150096968
    Abstract: Provided is a thermal mechanical diffusion system and method. In accordance with the present invention, one end of a fiber under tension is vibrated while a portion of the fiber is heated. A push-pull action of one end of the fiber forces increased (or rapid) diffusion of dopants in the portion of the fiber that is in a heat zone, which receives the heat. By controlling the amplitude and frequency of the vibration, a diffusion profile of one or more fibers can be dictated with precision. Heat sources having narrower thermal profiles can enable greater precision in dictating the diffusion profile. As an example, this can be particularly useful for creating a diffusion taper within a fiber to be spliced, where the taper is a result of thermal expansion of the fiber core. Diffusion can occur much more rapidly than is typical.
    Type: Application
    Filed: December 16, 2014
    Publication date: April 9, 2015
    Applicant: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, John Lower
  • Patent number: 8979396
    Abstract: A side pump fiber and a method of making a side pump fiber are provided. A plurality of pump fibers can be joined to a side of a signal fiber, at different locations. The method includes creating a lengthwise, tapered, concave pocket cut in a pump (or side pump) fiber, inserting the signal fiber in the pocket cut, and then coupling the side pump fiber to the center fiber at the pocket cut. Optical amplifiers and lasers, as examples, can be made using the above method and side pump fibers.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: March 17, 2015
    Assignee: 3SAE Technologies, Inc.
    Inventor: Robert G. Wiley
  • Patent number: 8977098
    Abstract: The present invention is directed to a liquid metal clamp, and a clamp system and method including same. A clamp system includes a first clamp configured to hold a first portion of a set of fibers and a second clamp configured to hold a second portion of the set of fibers, the second clamp comprising a liquid metal that takes a liquid form at a first temperature for receipt of the second portion of the set of fibers and that takes a solid form at a second temperature to secure the second of the set of fibers. The set of fibers can be a single fiber or a plurality of fibers. The fiber or fibers can have a circular or non-circular cross section.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: March 10, 2015
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, Jared Meitzler, Jeremy Dawkins
  • Patent number: 8911161
    Abstract: Provided is a thermal mechanical diffusion system and method. In accordance with the present invention, one end of a fiber under tension is vibrated while a portion of the fiber is heated. A push-pull action of one end of the fiber forces increased (or rapid) diffusion of dopants in the portion of the fiber that is in a heat zone, which receives the heat. By controlling the amplitude and frequency of the vibration, a diffusion profile of one or more fibers can be dictated with precision. Heat sources having narrower thermal profiles can enable greater precision in dictating the diffusion profile. As an example, this can be particularly useful for creating a diffusion taper within a fiber to be spliced, where the taper is a result of thermal expansion of the fiber core. Diffusion can occur much more rapidly than is typical.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: December 16, 2014
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, John Lower
  • Patent number: 8858096
    Abstract: A side pump fiber and a method of making a side pump fiber are provided. A plurality of pump fibers can be joined to a side of a signal fiber, at different locations. The method includes creating a lengthwise, tapered, concave pocket cut in a pump (or side pump) fiber, inserting the signal fiber in the pocket cut, and then coupling the side pump fiber to the center fiber at the pocket cut. Optical amplifiers and lasers, as examples, can be made using the above method and side pump fibers.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: October 14, 2014
    Assignee: 3SAE Technologies, Inc.
    Inventor: Robert G. Wiley