Patents Assigned to AG Processing Technologies, Inc.
  • Patent number: 5324684
    Abstract: A technique for doping silicon material or other semiconductors uses gas phase dopant sources under reduced pressure in a radiantly heated, cold-wall reactor. The technique is applied to the automated integrated circuit manufacturing techniques being adopted in modern fabrication facilities. The method includes placing a substrate comprising semiconductor material on a thermally isolated support structure in a reduced pressure, cold-wall reaction chamber; radiantly heating the substrate within the reaction chamber to a controlled temperature; flowing a gas phase source of dopant at controlled pressure and concentration in contact with the substrate so that the dopant is absorbed by the substrate, and annealing the substrate. The substrate may be first coated with a layer of polycrystalline semiconductor, and then gas phase doping as described above may be applied to the polycrystalline layer.
    Type: Grant
    Filed: February 25, 1992
    Date of Patent: June 28, 1994
    Assignee: AG Processing Technologies, Inc.
    Inventors: Ahmad Kermani, Kristian E. Johnsgard, Carl Galewski
  • Patent number: 5165796
    Abstract: Apparatus for optically determining the temperature of an object in an environment at elevated temperature provides enhanced measurement accuracy by sensing radiation from the object in two or more different wavebands of radiation. The information derived therefrom is cyclically sampled and processed to provide corrected emissivity of the object. The temperature of the object is accurately determined from the corrected emissivity and sensed radiation therefrom. The apparatus includes a radiation detector for receiving radiation during an interval, an optical filter structure with a plurality of optical filters of different radiation transmissive characteristics, and sampling circuits for receiving the radiation signal from the detector during a selected period within the interval during which radiation is supplied to the detector; wherein the selected period is shorter than the interval, is determined in response to the cyclic operation of the filter structure, and contains the least amlitude gradient.
    Type: Grant
    Filed: December 7, 1990
    Date of Patent: November 24, 1992
    Assignee: AG Processing Technologies, Inc.
    Inventors: Arnon Gat, Michael French
  • Patent number: 5148714
    Abstract: A reduced pressure reaction chamber allows rotation of a workpiece, and translation of the workpiece along the axis of rotation, using a sealed rotate and translate actuator. The reaction chamber has rigid walls, and is particularly suited to reduced pressure systems. The actuator includes a shaft coupled through the wall of the chamber by a vacuum rotary feed-through mechanism. A sleeve is mounted over the shaft and coupled to the shaft by means of threads, and shaft seals, which provide a frictional coupling between the shaft and the sleeve. Due to the frictional coupling, the sleeve attains the same rotational velocity as the shaft. A clutch is provided, which engages the sleeve when linear translational motion is desired. The difference in rotational velocity of the shaft and the sleeve is translated into linear motion by the threads. The shaft seals, in addition to providing the frictional coupling, seal the actuator, and reduce contamination caused by such mechanism.
    Type: Grant
    Filed: October 24, 1990
    Date of Patent: September 22, 1992
    Assignee: AG Processing Technology, Inc.
    Inventor: James McDiarmid
  • Patent number: 5114242
    Abstract: The system and method for pyrometrically determining the temperature of a semiconductor wafer within a processing chamber accurately determines the actual emissivity of the semiconductor wafer at a reference temperature using multiple pyrometers operating at different wavelengths. The pyrometers are calibrated for radiation received from the processing chamber and their responses are then corrected to provide the proper temperature indication for a master wafer at a known reference temperature to yield emissivity of the master wafer. Other similar wafers exhibiting extreme values of emissivity are sensed at the reference temperature to provide pyrometer responses that are corrected in accordance with the master emissivity, and such corrected responses are used to establish a correlation between emissivities and the corrected pyrometer responses.
    Type: Grant
    Filed: December 7, 1990
    Date of Patent: May 19, 1992
    Assignee: AG Processing Technologies, Inc.
    Inventors: Arnon Gat, David Mordo
  • Patent number: 5061084
    Abstract: Dual pyrometric detectors and method measure the temperature of a remote heated object in the presence of ambient radiation. One detector measures emitted radiation from both the remote object and from the environment, and the other direction measures radiation predominantly from the environment alone. The output signals from the two detectors are processed electronically to yield the detected radiation from the remote object alone. The result can then be electronically processed to display the pyrometrically-measured temperature of the remote object.
    Type: Grant
    Filed: February 7, 1991
    Date of Patent: October 29, 1991
    Assignee: AG Processing Technologies, Inc.
    Inventors: Thomas E. Thompson, Eugene R. Westerberg
  • Patent number: 4989991
    Abstract: An improved method and apparatus are disclosed for calibrating the emissivity characteristics of a semiconductor wafer within a processing chamber by supporting a sample wafer on a graphite susceptor within the chamber and by comparing the temperature measured within the susceptor in close proximity to the center of the wafer with the temperature measured by the emission of radiation from the surface of the wafer through the walls of the processing chamber. Temperature measurements subsequently made from the radiation emitted from the surface of similar wafers are corrected with reference to the measurement made of the temperature within the susceptor on the sample wafer.
    Type: Grant
    Filed: June 12, 1989
    Date of Patent: February 5, 1991
    Assignee: AG Processing Technologies, Inc.
    Inventors: Michel Pecot, Jaim Nulman
  • Patent number: 4919542
    Abstract: Radiation detectors and method measure the emissivity of a remote, heated semiconductor wafer in the presence of ambient radiation. Incident radiation within a selected waveband from a controlled source intermittently radiates the remote wafer, and reflected radiation therefrom is detected in synchronism with the intermittent incident radiation to yield output indications of emissivity of the wafer under varying processing conditions. The temperature of the wafer is monitored by another radiation detector (or detectors) operating substantially within the same selected waveband, and the temperature indications thus derived are corrected in response to the output indications of emissivity to provide indications of the true temperature of the wafer.
    Type: Grant
    Filed: April 27, 1988
    Date of Patent: April 24, 1990
    Assignee: AG Processing Technologies, Inc.
    Inventors: Jaim Nulman, Nick J. Bacile, Wendell T. Blonigan
  • Patent number: 4854727
    Abstract: An improved method and apparatus are disclosed for calibrating the emissivity characteristics of a semiconductor wafer within a processing chamber by supporting a sample wafer on a graphite susceptor within the chamber and by comparing the temperature measured within the susceptor in close proximity to the center of the wafer with the temperature measured by the emission of radiation from the surface of the wafer through the walls of the processing chamber. Temperature measurements subsequently made from the radiation emitted from the surface of similar wafers are corrected with reference to the measurement made of the temperature within the susceptor on the sample wafer.
    Type: Grant
    Filed: October 26, 1987
    Date of Patent: August 8, 1989
    Assignee: AG Processing Technologies, Inc.
    Inventors: Michel Pecot, Jaim Nulman