Abstract: A micromovement measuring device has a first element such as a probe tip or flat plate coupled to a test body (107) the movement of which is to be measured. A second element (104) is located adjacent to the first element, to form a gap (108) therebetween. As the test body and the first element gradually move away from the measuring element, so increasing the size of the gap, the second element is repeatedly moved up, to restore the gap to its original size. These repeated small quantized movements of the measuring element (104) are counted, and are used to provide an indication of how far the test body (107) has moved. In other embodiments, the first element may gradually move toward the second element, with the latter repeatedly moving away.
Abstract: A micromovement measuring device has a first element such as a probe tip or flat plate coupled to a test body (107) the movement of which is to be measured. A second element (104) is located adjacent to the first element, to form a gap (108) therebetween. As the test body and the first element gradually move away from the measuring element, so increasing the size of the gap, the second element is repeatedly moved up, to restore the gap to its original size. These repeated small quantized movements of the measuring element (104) are counted, and are used to provide an indication of how far the test body (107) has moved. In other embodiments, the first element may gradually move toward the second element, with the latter repeatedly moving away.
Abstract: A micromovement measuring device records creeping and dynamic infraprocesses both of natural and artificial origin, including seismic processes or infrasound and gravitational waves. The device has a sensitivity for measuring in a wide dynamic range. The device includes a measuring element, a sensitive element, a membrane, a signal conditioner, a fixing electromagnet, and a pulling electromagnet. The pulling electromagnet is located on the membrane which increases the range of the measurable movements. A hermetic housing prevents the formation of oxides or similar films at the working surfaces of the measuring and sensitive elements. A method of converting movement to electric signals is performed by the device, which takes an electronic field emission current to be a characteristic of quantization, and so movements in the range of Angstroms may be recorded.
Type:
Grant
Filed:
August 15, 2005
Date of Patent:
May 19, 2009
Assignee:
A-Metrics, LLC
Inventors:
Leonids Bekers, Bonifatijs Lubgins, Jehezkelis Finkelshteins, Juris Nurovs, Alexandra Piorunskis