Abstract: System and method for measuring hypertension conditions of a subject is disclosed. The disclosed system and method includes thermal sensors for capturing thermal images and/or videos of a body part; and a processing engine to detect a predefined region of the body part in each frame of the captured images and/or videos. The processing engine segments one or more portions from the detected predefined region in each frame of the captured images and/or videos to identify a region of interest comprising arteries in the one or more segmented portions. Based on the identified region of interest, the engine extracts pixel values from each frame of the captured images and/or videos to determine parameters associated with a blood flow velocity and a blood pressure of the subject. Further a type of hypertension and a risk score for the hypertension condition based on the determined parameters using computational models are measured.
Abstract: System and method for measuring diabetes mellitus condition of a subject is disclosed. The disclosed system and method includes thermal sensors for capturing thermal images and/or videos of a body part; and a processing engine to detect a predefined region of the body part in each frame of the captured images and/or videos. The processing engine segments one or more portions from the detected predefined region in each frame of the captured images and/or videos to identify a region of interest comprising major arteries in the segmented portions. Based on the ROI, the engine extracts pixel values, representing biosignals, from each frame of the captured images and/or videos so as to determine one or more parameters associated with the hemodynamic factors and a rate of atherosclerosis of the subject. Further, a risk score for the diabetes mellitus condition based on the determined parameters using computational models is measured.
Abstract: System and method for measuring dyslipidemia condition of a subject using thermal imaging is disclosed. The disclosed system and method includes thermal sensors for capturing thermal images and/or videos of a body part; and a processing engine to detect a predefined region of the body part in each frame of the captured images and/or videos. The processing engine segments one or more portions from the predefined region in each frame of the captured images and/or videos to identify a ROI comprising arteries in the segmented portions. Based on the identified region of interest, the engine extracts pixel values, representing biosignals, from each frame of the captured images and/or videos to determine parameters associated with a rate of atherosclerotic, levels of lipids and lipoproteins, and hemodynamic factors of the subject. Further a risk score for the dyslipidemia condition based on the determined parameters using computational models is measured.
Abstract: A system and method for measuring health parameters of a subject is disclosed. The system and method are based on a mirror; an image acquisition unit configured with the mirror, and comprising a thermal sensor for capturing thermal images or videos of a body part of the subject; and a processing unit to receive data packets associated with the captured thermal images or videos from the image acquisition unit to identify a region of interest of the body part in each frame of the captured thermal images and videos. Further, the processing unit extracts attributes associated with a heat intensity variation from the identified region of interest region, and compares the extracted attributes with a predetermined set of reference data to measure risk scores associated with the health parameters of the subject based on the comparison. The measured risk scores are displayed by a display unit.