Abstract: A spectrum analyzer (10) comprises a signal input or receiver (11) for receiving a signal, an A/D converter (12) configured to sample the received signal and generate a data stream of IQ-data, a digital processing circuit (13) for generating compressed data from the data stream of IQ-data, and a data interface (19) for outputting the compressed data from the spectrum analyzer (10).
Abstract: Conventional real-time spectrum analyzers have a degree of technical complexity in the hardware which increases disproportionately as the analysis bandwidth increases for Fourier transformations of the measured sampling values. When using high analysis bandwidths, a detailed resolution is not needed of each analyzed individual frequency on the time plane at the same time; instead, detection of the presence of short pulses can be important as well. For this application, mixing sampling values on the time plane using a variable auxiliary frequency allows the sampling rate to be reduced, in that the bandwidth is maintained but a compression is carried out on the time plane. A very high time resolution which far exceeds the capabilities of conventional real-time spectrum analyzers can additionally be achieved overall for the analysis bandwidth, the time resolution then being computationally assignable to the individual frequencies for signal forms, in particular pulses, which occur in practice.
Abstract: Conventional real-time spectrum analyzers have a degree of technical complexity in the hardware which increases disproportionately as the analysis bandwidth increases for Fourier transformations of the measured sampling values. When using high analysis bandwidths, a detailed resolution is not needed of each analyzed individual frequency on the time plane at the same time; instead, detection of the presence of short pulses can be important as well. For this application, mixing sampling values on the time plane using a variable auxiliary frequency allows the sampling rate to be reduced, in that the bandwidth is maintained but a compression is carried out on the time plane. A very high time resolution which far exceeds the capabilities of conventional real-time spectrum analyzers can additionally be achieved overall for the analysis bandwidth, the time resolution then being computationally assignable to the individual frequencies for signal forms, in particular pulses, which occur in practice.