Patents Assigned to Abbott Cardiovascular Systems, Inc.
  • Publication number: 20210128303
    Abstract: The present disclosure describes tissue gripping devices, systems, and methods for gripping mitral valve tissue during treatment of a mitral valve and while a tissue fixation device is implanted in the mitral valve. The tissue gripping device includes a flexible member and one or more tissue gripping members coupled to one or more arms of the flexible member. The flexible member is formed from a shape-memory material, such as nitinol, and the tissue gripping member(s) are formed from a material that is more rigid than the shape-memory material. The tissue gripping member(s) are attached to the flexible member by threading or looping suture lines around and/or through the tissue gripping member(s) and the flexible member and/or by applying a cover material to the tissue gripping device to hold the tissue gripping member(s) against the flexible member.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Applicant: Abbott Cardiovascular Systems, Inc.
    Inventor: Michael F. Wei
  • Publication number: 20210128872
    Abstract: A guidewire for use in intravascular procedures has an inner coil that is radiopaque and an outer coil that is non-radiopaque at the distal end of the guidewire. The radiopaque inner coil is visible under fluoroscopy so that the physician can monitor the location of the distal end of the guidewire during a procedure. The inner coil and the outer coil can be formed from a single wire or a multi-filar wire. The inner coil and the outer coil can have any of the following cross-sections for enhanced torquability: I-beam; vertical rectangular; vertical ellipse; square; peanut shape; vertical hexagonal; horizontal hexagonal; and horizontal ellipse.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Roozbeh Kalhor, Matthew Vasquez, Puneet Kamal Singh Gill, Jonathan P. Durcan
  • Publication number: 20210128874
    Abstract: A guidewire for use in intravascular procedures has an elongated core member including a proximal core section having a uniform diameter. One or more parabolic grind profile sections extend distally from the distal end of the proximal core section and provide a linear change in bending stiffness and a high degree of torque to the distal portion of the guidewire.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventor: Raymundo Rodriguez
  • Publication number: 20210128883
    Abstract: A guidewire for use in intravascular procedures has an inner coil that is radiopaque and an outer coil that is non-radiopaque at the distal end of the guidewire. The radiopaque inner coil is visible under fluoroscopy so that the physician can monitor the location of the distal end of the guidewire during a procedure. The inner coil and the outer coil can be formed from a single wire or a multi-filar wire. The inner coil and the outer coil can have any of the following cross-sections for enhanced torquability: I-beam; vertical rectangular; vertical ellipse; square; peanut shape; vertical hexagonal; horizontal hexagonal; and horizontal ellipse.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Puneet Kamal Singh Gill, Jonathan P. Durcan, Jessica Saenz
  • Publication number: 20210128181
    Abstract: A guidewire for use in intravascular procedures has a solder or weld joint at a distal end thereof. A plurality of dimples are formed on the solder/weld joint to increase the engagement and penetration of fibrous material including chronic total occlusions (CTO).
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Robert C. Hayzelden, Puneet Kamal Singh Gill
  • Publication number: 20210128875
    Abstract: A shaping tool is used to form a bend in the distal end of a guidewire. The guidewire distal end is inserted through a channel and into a cavity of the shaping tool. Using hand pressure, a first member is moved axially relative to a second member of the shaping tool, thereby moving the cavity relative to the channel and imparting a bend in the distal end of the guidewire.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Puneet Kamal Singh Gill, Jonathan P. Durcan
  • Publication number: 20210128884
    Abstract: A mold is used to form a solder joint to join the distal end of the guidewire to a wire coil. The mold has a cavity that can have different configurations so that the solder joint can be any of bullet shaped, micro-J shaped, cone shaped, truncated cone shaped, or have a textured surface.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventor: Robert C. Hayzelden
  • Patent number: 10980531
    Abstract: A closure device for closing an opening in tissue is provided. The closure device includes an elongate member through which needles may be deployed. The closure device also includes a foot portion having one or more feet slidably mounted relative thereto. The feet are movable between a deployed position and a delivery position. The feet include cuffs removably mounted therein, with sutures connected between the cuffs. When the feet are in the deployed position and the needles are advanced, the needles securely engage the cuffs and draw the cuffs and suture through the lumen wall so that the opening in the lumen wall can be closed with the sutures.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: April 20, 2021
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Wouter E. Roorda, Douglas H. Mehl, Rizza A. Garcia, Timothy C. Reynolds, Dinorah V. Merrill, Dawn Ma, David J. Milazzo, Aaron M. Fortson
  • Patent number: 10980981
    Abstract: A procedural sheath and methods of use that assists in maintaining a fluid path while the procedural sheath is positioned within a vascular conduit of a patient. The procedural sheath includes one or more channels extending longitudinally along a working length of the body of the sheath. Each channel includes one or more fluid paths configured to allow blood to flow from the vascular conduit into a device receiving lumen of the sheath. One or more elongate members selectively coupled to the body operatively cooperate with the channels to fluidly control fluid access into the device receiving lumen through the fluid paths.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: April 20, 2021
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS, INC
    Inventor: Aaron M. Fortson
  • Patent number: 10967556
    Abstract: A medical device includes a balloon expanded scaffold (or stent) crimped to a catheter having a balloon. The scaffold is crimped to the balloon by a process that includes using protective polymer sheaths or sheets during crimping, and resetting the sheaths or sheets during the crimping to avoid or minimize interference between the polymer material and scaffold struts as the scaffold is reduced in size. Balloon pressure is adjusted when the polymer material is reset.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: April 6, 2021
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Karen J. Wang, Boyd V. Knott, Edward P. Garcia
  • Patent number: 10952852
    Abstract: The invention provides medical devices, systems and methods for tissue approximation and repair and in particular to reduce mitral regurgitation by means of improved coaptation. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the cardiovascular system, heart, other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: March 23, 2021
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Casey M. Barbarino, Benjamin L. Lee, Chad Abunassar
  • Publication number: 20210031001
    Abstract: A method for managing a guidewire in preparation for a surgical operation, comprising attaching a block of resilient polymer to a coiled tube which contains a guidewire; attaching to the block of resilient polymer a card having printed information concerning the guidewire on a planar surface of the card; removing the guidewire from the coiled tube; removing the block of resilient polymer from the coiled tube while keeping the card having printed information attached to the block of resilient polymer; coiling the guidewire into a flat spiral form; capturing, in a slot formed in the block of resilient polymer, a plurality of portions of the guidewire, which portions are adjacent to and parallel with each other, thereby maintaining the guidewire in the flat spiral form.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 4, 2021
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Lauren Coatsworth, Jimmy L. Quijas
  • Patent number: 10893941
    Abstract: The present disclosure describes tissue gripping devices, systems, and methods for gripping mitral valve tissue during treatment of a mitral valve and while a tissue fixation device is implanted in the mitral valve. The tissue gripping device includes a flexible member and one or more tissue gripping members coupled to one or more arms of the flexible member. The flexible member is formed from a shape-memory material, such as nitinol, and the tissue gripping member(s) are formed from a material that is more rigid than the shape-memory material. The tissue gripping member(s) are attached to the flexible member by threading or looping suture lines around and/or through the tissue gripping member(s) and the flexible member and/or by applying a cover material to the tissue gripping device to hold the tissue gripping member(s) against the flexible member.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: January 19, 2021
    Assignee: Abbott Cardiovascular Systems, Inc.
    Inventor: Michael F. Wei
  • Publication number: 20210000625
    Abstract: An expandable stent for implantation in a body lumen, such as an artery, is disclosed. The stent consists of a plurality of radially expandable cylindrical rings generally aligned on a common longitudinal stent axis and interconnected by one or more interconnecting links placed so that the stent is flexible in the longitudinal direction. The link pattern is optimized to enhance longitudinal flexibility and high longitudinal strength compression of the stent.
    Type: Application
    Filed: July 3, 2019
    Publication date: January 7, 2021
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Diem Ta, Erik Eli, Senthil Eswaran
  • Publication number: 20200398031
    Abstract: A torque device for gripping and manipulating a guidewire for advancing the guidewire into a patient's vascular system. The torque device is configured for single-handed use and can be opened for repositioning the torque device relative to the guidewire and closed for gripping the guidewire to prevent axial and rotational movement relative to the guidewire. The torque device grips the guidewire at multiple spaced apart locations on the guidewire.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Puneet Kamal Singh Gill, Raymundo Rodriguez, Jonathan Durcan, Robert Hayzelden, Michael Green
  • Patent number: 10856985
    Abstract: A device for adjusting a shape of a coronary sinus in a heart of a patient, the device comprising a flexible tube having: an outer wall extending between a proximal end and a distal end; a first bore extending from the proximal end to the distal end; a proximal flange attached to the proximal end; a distal flange attached to the distal end; wherein, the outer wall includes at least one accordion-like hinge region.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 8, 2020
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Michael F. Wei
  • Publication number: 20200360018
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 19, 2020
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent DELL, Theodore KETAI, Tanmay MISHRA, Stephanie JONES, Jacob GREENBERG, Michael HONG, Daniel HALE, Francisco VALENCIA, Steven TYLER
  • Patent number: 10806439
    Abstract: Devices for closing a passage through tissue communicating with a body lumen. The device may include an elongate body, a sheath disposed at the distal end of the device for disposition within a body lumen, a hollow needle disposed within a needle lumen of the body, the needle being selectively advancable through the needle lumen, a suture-anchor ejection mandrel disposed within the hollow needle that is also selectively advancable through the hollow needle, a suture-anchor and suture disposed within the hollow needle, a distal end of the suture attached to the suture anchor for ejection out the hollow needle by the mandrel. A needle guide disposed between the sheath and proximal end of the body may include a needle port through which the needle can exit. A hemostatic plug is disposed over the needle port so as to be penetrated by the needle upon exiting the port.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: October 20, 2020
    Assignee: Abbott Cardiovascular Systems, Inc.
    Inventor: Aaron M. Fortson
  • Patent number: 10792039
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: October 6, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent Dell, Theodore Ketai, Tanmay Mishra, Stephanie Jones, Jacob Greenberg, Michael Hong, Daniel Hale, Francisco Valencia, Steven Tyler
  • Patent number: 10772621
    Abstract: A suture management member including a body being elongate in a first direction and having a suture-receiving recess in a second direction transverse to the first direction. The suture-receiving recess extends partially through the body and separates the body into a first portion and a second portion. The first portion is being biased towards the second portion to securely retaining a suture within the suture-receiving recess.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: September 15, 2020
    Assignee: Abbott Cardiovascular Systems, Inc.
    Inventors: Aaron M. Fortson, David J. Milazzo