Abstract: An apparatus and method for stopping of ablation energy delivery to tissues during cardiac ablation procedures provides added safety. The apparatus uses control switch mechanism comprising relay switch and circuitry inserted between the ground patch and ablation generator. Alternatively, the control switching means can be on the catheter side of the ablation circuit. The switching mechanism is connected to a computer, which controls the on-off switch based on pre-determined conditions. When the control switch part of the circuit is opened, the ablation generator shuts of immediately. The software in the computer is configured, such that the computer controlled stopping of energy delivery only occurs when patient safety is at risk.
Abstract: Method and system of increasing safety of ablation of cardiac arrythmias, especially AVNRT and antero-septal accessory pathway ablations. A computer based system acquires, conditions, and analyzes the timing relationships between atrial and ventricualr signals during normal sinus (NSR) and junctional rhythms (JR) during ablation. If the timing analyses determines a safety issue, such as loss of retrograde conduction during junction rhythm, while slow pathway modification is being performed, the computer electronically disconnects the ablation circuit. This immediately stops the energy delivery to the tissues and provides a chance to reposition the ablation catheter tip to a more safer location. The ablation may be using radiofrequency (RF), cryoablation, or with high intensity focused ultrasound (HIFU). The functionality and circuitry of the system may also be incorporated within an ablation generator, EP recording and monitoring system, or a cardiac mapping system.
Abstract: Method and system of increasing safety of ablation of cardiac arrythmias, especially AVNRT and antero-septal accessory pathway ablations. A computer based system acquires, conditions, and analyzes the timing relationships between atrial and ventricualr signals during normal sinus (NSR) and junctional rhythms (JR) during ablation. If the timing analyses determines a safety issue, such as loss of retrograde conduction during junction rhythm, while slow pathway modification is being performed, the computer electronically disconnects the ablation circuit. This immediately stops the energy delivery to the tissues and provides a chance to reposition the ablation catheter tip to a more safer location. The ablation may be using radiofrequency (RF), cryoablation, or with high intensity focused ultrasound (HIFU). The functionality and circuitry of the system may also be incorporated within an ablation generator, EP recording and monitoring system, or a cardiac mapping system.