Patents Assigned to ACIST Medical System, Inc.
  • Patent number: 10105064
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve. For example, such a device may be used to measure fractional flow reserve (FFR) across a stenotic lesion in order to assess the severity of the lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. Some distance back from the sensor and distal sleeve, the device separates from the guidewire to permit independent control of the sensor delivery device and the guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: October 23, 2018
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Patent number: 10039495
    Abstract: A pressure transducer mounting device may include a support member and a pressure transducer holder. In use, the support member may attach to a support surface, such as a housing of a power injection device, while the pressure transducer holder is moveably connected to the support member. The pressure transducer holder may expand open to receive one of a plurality of different sized pressure transducers and bias closed to hold a received one of the plurality of different sized pressure transducers. In addition, the pressure transducer holder may move relative to the support member to one of a plurality of different vertically elevated positions. The pressure transducer mounting device may accommodate different pressure transducers, providing a universal mounting device that can adapt to different medical provider preferences and different pressure transducer sourcing options.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: August 7, 2018
    Assignee: ACIST Medical Systems, Inc.
    Inventors: John Russell, William J. Taylor
  • Patent number: 10010251
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve. For example, such a device may be used to measure fractional flow reserve (FFR) across a stenotic lesion in order to assess the severity of the lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. Some distance back from the sensor and distal sleeve, the device separates from the guidewire to permit independent control of the sensor delivery device and the guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: July 3, 2018
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Patent number: 9925338
    Abstract: An injection system includes a syringe, which preferably includes larger and smaller inner diameters, and a plunger. A wiper sidewall of the plunger defines a cavity, into which a plunger shaft of the system is inserted, for moving the plunger, within the syringe, for fluid injection. The plunger includes a feature for engaging the shaft, and the sidewall preferably includes an expandable-contractible portion, in which the feature is formed. When the plunger is initially mounted within the larger inner diameter of the syringe, the portion of the sidewall is expanded and the feature of the plunger does not operably engage the inserted shaft. When the shaft moves the plunger into the smaller inner diameter of the syringe, the portion of the sidewall contracts and the feature operably engages the shaft. A deformable end wall of the plunger may be spaced apart from a distal terminal end of the inserted shaft.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: March 27, 2018
    Assignee: ACIST MEDICAL SYSTEMS, INC.
    Inventors: Martin G. Hieb, David J. Hajicek, Sidney D. Nystrom
  • Patent number: 9901260
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve. For example, such a device may be used to measure fractional flow reserve (FFR) across a stenotic lesion in order to assess the severity of the lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. Some distance back from the sensor and distal sleeve, the device separates from the guidewire to permit independent control of the sensor delivery device and the guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: February 27, 2018
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Patent number: 9901671
    Abstract: A method of preventing extravaation of contrast agent during a computed tomography injection. An automatic injector device facilitates ease of accomplishing the method. The method includes establishing the absence of extravaation using an absorbable injectate, such as saline, prior to injecting the contrast agent. The device includes a computerized injector head capable of switching between two injectates without physical human intervention. The device is controlled by a remote operating panel located in a control room that is protected from X-ray radiation. The device includes various software driven safety features that prevent the occurrence of unsafe conditions.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: February 27, 2018
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Glenn Toews, Chris Szczech, Thomas J. McPeak, Douglas J. Duchon
  • Patent number: 9854981
    Abstract: A sensor delivery device and methods of using the device are provided, wherein the sensor delivery device includes a sensor that is adapted to obtain a measurement that can be used to calculate cross-sectional area of a surrounding anatomical structure. In certain cases, the sensor is an electrode arrangement, wherein the electrode arrangement generates a current and measures voltage resulting from the current. The voltage measurement is then used to calculate conductivity of fluid in the surrounding anatomical structure and thus cross-sectional area.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: January 2, 2018
    Assignee: ACIST MEDICAL SYSTEMS, INC.
    Inventor: Jason Fredrick Hiltner
  • Patent number: 9808222
    Abstract: An intravascular ultrasound imaging system with a catheter having an elongated body having a distal end and an imaging core arranged to be inserted into the elongated body. The imaging core is arranged to transmit ultrasonic energy pulses and to receive reflected ultrasonic energy pulses. The system further includes an imaging engine coupled to the imaging core and arranged to provide the imaging core with energy pulses to cause the imaging core to transmit the ultrasonic energy pulses. The energy pulses are arranged in repeated sequences and the energy pulses of each sequence have varying characteristics. The reflected pulses may be processed to provide a composite image of images resulting from each different characteristic.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: November 7, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Thomas C. Moore, Kendall R. Waters, J. Steve Reynolds, Duc H. Lam, Donald Masters
  • Patent number: 9782148
    Abstract: An ultrasound catheter includes an elongated body, a first and second ablation element each configured to ablate soft tissue and an imaging core having an ultrasound transducer. In another example, an ultrasound catheter includes an elongated body, a RF ablator configured to ablate soft tissue at a frequency less than 1 MHz, and an ultrasound transducer configured to image at a frequency greater than or equal to 10 MHz. In another example, an ultrasound catheter apparatus includes an ultrasound catheter having an ablator and an ultrasound transducer, and a graphical user interface displayed using a computer processor. The graphical user interface displays a real-time image of a treatment area and the ultrasound catheter, and a chart displaying ablation as a function of time, the chart being updated in real-time.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: October 10, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Kendall R. Waters, Thomas C. Moore, Robert Zelenka, Richard Bautista
  • Patent number: 9775567
    Abstract: Described herein are methods and systems for calculating a corrected Fractional Flow Reserve (FFR). An illustrative method includes delivering a first pressure sensing device including a pressure sensor to a location in a blood vessel having a stenosis, positioning the pressure sensor distal to the stenosis, measuring the distal pressure, measuring the proximal pressure, and calculating a corrected FFR using the measured proximal and distal pressures and applying a correction factor or correction equation. The corrected FFR may approximate a FFR that would have been obtained if the pressure measured downstream of the stenosis was measured using a second pressure sensing device having a second maximum cross-sectional area in a distal portion of the second pressure sensing device that is different from the first maximum cross-sectional area.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: October 3, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Todd M. Suchecki, Alan K. Evans
  • Patent number: 9713456
    Abstract: An intravascular imaging system can include a catheter, a position sensor, and an intravascular imaging engine for receiving information from the catheter and the position sensor. The position sensor can include a reference element and a movable element, which can have a movable element position that is correlated to the position of an imaging transducer in the catheter. The relative position between the movable element and a reference element can be determined and can correspond to the relative movement of the transducer within a patient's vasculature. The imaging engine can receive position information from the position sensor and image information from the catheter and generate a display using the received information. Because relative movement of the transducer can be determined, spatial relationships between sets of imaging data can be determined, and image data from multiple transducer locations can be combined into one image.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: July 25, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Jason F. Hiltner, Robert F. Wilson, Sidney D. Nystrom
  • Patent number: 9713672
    Abstract: According to preferred embodiments and methods of the present disclosure, a medical injection system employs a single pump for the injection of multiple fluids, rather than employing a pump for each type of fluid, for example, like the prior art system described above. Embodiments of pumps disclosed herein preferably include a disposable pump cartridge configured to be contained within a hull of a medical injection system, wherein the hull may be formed when a pressure plate member is closed against a base plate; and, when the pressure plate member is opened with respect to the base plate, the disposable pump cartridge may be removed and replaced.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: July 25, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventor: Sidney Donald Nystrom
  • Patent number: 9704240
    Abstract: An intravascular imaging system includes a transducer capable of generating raw data representative of the structure of a patient's vasculature. The system includes an imaging engine for receiving the raw data and generating enhanced data for presentation to a user. The imaging engine includes a coherence filter, an envelope detection module having one or more envelope detectors, and a spatial filter for processing data in various stages. Such stages of processing in the imaging engine act to reduce high frequency noise, generate low frequency data, reduce low frequency noise, and display low frequency data with an improved signal-to-noise ratio. The system can include an image generator for generating an image based on enhanced data and a display for displaying the generated image.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: July 11, 2017
    Assignee: ACIST MEDICAL SYSTEMS, INC.
    Inventors: Duc Lam, J Steve Reynolds
  • Patent number: 9693754
    Abstract: Systems and methods for image processing based on ultrasound data. The system may include an IVUS catheter configured to collect data vectors including ultrasound data and an imaging engine configured to process the ultrasound data of the data vectors. The imaging engine may receive the data vectors and divide the data vectors into different sets. The ultrasound data of each respective set may be averaged and then an envelope of each set may be detected. The envelopes of each set may then be averaged to generate an enhanced data vector which may be used to generate an image.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: July 4, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Duc H. Lam, Thomas C. Moore, Kendall R. Waters
  • Patent number: 9675325
    Abstract: An imaging system comprises a catheter having a lumen, a rotatable imaging probe within the catheter lumen including a distal transducer and first and second conductors coupled to the transducer, and a coupler that couples the rotatable first and second conductors to non-rotatable third and fourth conductors, respectively. The coupler includes a rotary capacitive coupler.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 13, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Thomas C. Moore, Robert Zelenka
  • Patent number: 9610425
    Abstract: Methods of providing image-guided transendocardial injection of a therapeutic agent into a left ventricular wall of a heart. Some methods enable injections into heart tissue under visualization. The methods may include providing an endoventricular injection catheter having integrated echocardiographic capability. The endoventricular injection catheter may have an imaging core and an injection system carried on the elongated body with the imaging core. The method may include positioning the endoventricular injection catheter into the left ventricle of the heart, which inserts the imaging core into the heart. The method may also include transmitting ultrasonic energy via the imaging core, receiving reflected ultrasonic energy at the distal end, visualizing the left ventricular wall of the heart using the imaging core, identifying infarct regions of the left ventricle, and injecting a therapeutic agent into the visualized infarcted regions of the left ventricle using the injection system.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: April 4, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Kendall R. Waters, Thomas C. Moore, Robert Zelenka, Paul Zalesky
  • Patent number: 9585806
    Abstract: A bedrail clamp with a jaw member positionable by an actuating member, the actuating member being configured to move to move the jaw member away from the bedrail and toward the bedrail to move the jaw member into contact with the bedrail to secure the bedrail against the clamp housing. Either the actuating member or the jaw member features an inclined surface that includes a first portion with a first angle and a second portion with a second angle. Methods of operating a bedrail clamp.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: March 7, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventor: Judson A. Herrig
  • Patent number: 9566381
    Abstract: A disposable fluid connector includes a first single-use tubing component having proximal and distal ends and a second single-use tubing component having proximal and distal ends, where the first single-use tubing component and the second single-use tubing component are each usable only for a single patient procedure. The disposable fluid connector also includes a connection comprising an electrical connector that is configured to electrically connect the connection to both a powered injector and to an external medical device, where the disposable fluid connector comprises a disposable cassette including a portion that is non-removably attached to both the first single-use tubing component and the second single-use tubing component.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 14, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Traci Barron, Niels Clausen-Stuck, Mark Fisher, Joseph Graceffa, David J. Hajicek, Martin G. Hieb, Anastasios G. Karahalios, Karen Kensok, Robert Kim, Lawrence Lunzer, Manfred Maiers, Adolfo Menendez, Jr., Khader Mohiuddin, Richard A. Oftedahl, Volker Roos, Jeremiah O'Leary
  • Patent number: 9554774
    Abstract: A catheter-based imaging system includes a catheter having a telescoping proximal end, a distal end having a distal sheath and a distal lumen, a working lumen, and an ultrasonic imaging core. The ultrasonic imaging core is arranged for rotation and linear translation. The system further includes a patient interface module including a catheter interface, a rotational motion control system that imparts controlled rotation to the ultrasonic imaging core, a linear translation control system that imparts controlled linear translation to the ultrasonic imaging core, and an ultrasonic energy generator and receiver coupled to the ultrasonic imaging core. The system further includes an image generator coupled to the ultrasonic energy receiver that generates an image.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: January 31, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Thomas C. Moore, Kendall R. Waters, Stephanie J. Buech, Robert Zelenka
  • Patent number: 9549679
    Abstract: A stenotic lesion can be characterized by measuring both pressure drop across the stenotic lesion and the size of the vessel lumen adjacent the stenotic lesion, both with sensors delivered intravascularly to the stenotic lesion site. The size (e.g., inner diameter, cross-sectional profile) of the vessel lumen adjacent the stenotic lesion can be measured via one or more intravascular ultrasound transducers. Such one or more intravascular ultrasound transducer(s) can be delivered to the site of the stenotic lesion with the same delivery device that carries a pressure transducer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 24, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Jason F Hiltner, Kendall R. Waters, Thomas C. Moore, Robert Zelenka