Abstract: A method for seismic surveying comprises deploying a plurality of seismic receivers proximate an area of subsurface to be surveyed. At least one seismic energy source moves in a path that circumscribes a center, wherein positions of the plurality of seismic receivers remain fixed. At least one of a distance between the path and the center changes monotonically as seismic energy source traverses the path, or the center moves in a selected direction as the seismic energy source traverses the path. The source is actuated at selected times as the at least one seismic energy source traverses the path, such that a spacing between positions of the source along the source path and transverse to the source path varies between successive actuations of the source. Seismic energy is detected at the plurality of seismic receivers resulting from actuating the at least one seismic energy source.
Type:
Grant
Filed:
May 27, 2022
Date of Patent:
April 15, 2025
Assignee:
ACTeQ LLC
Inventors:
David Ridyard, David J. Monk, Damian Hite
Abstract: A method for seismic surveying includes deploying a first seismic energy source at a plurality of locations along a source line. Locations are determined by, (i) setting a shot point at one end of the line, setting a minimum distance between shot points and setting a nominal shot point interval being greater than a Nyquist maximum spacing at a maximum spatial frequency to be evaluated in the subsurface area, (ii) calculating a maximum distance between shot points as a difference between twice the nominal shot point interval and the minimum distance, (iii) dividing a span between the maximum distance and the minimum distance into equally spaced samples, and choosing at random one of the equally spaced samples to calculate a shot point subsequent to the initial shot point; and (iv) setting the calculated shot point as the initial shot point and repeating (ii) and (iii) until the subsequent calculated shot point is within a predetermined distance of an opposed end of the first source line.