Patents Assigned to Activated Research Company, LLC
-
Patent number: 11835497Abstract: In the present system and method, a conduit from a LC device continuously transports solvent, buffers, and analytes to the inlet of a solvent removal and analyte conversion device which evaporates the solvents, leaving non-volatile analytes for detection. The device comprises a rotating disk. The liquid chromatograph device can be any device using liquid chromatography to separate molecules. The solvents in the LC effluent can include, but are not limited to, water, methanol, acetonitrile, tetrahydrofuran, and acetone. After removal of the volatile components, the non-volatile analytes are converted with a concentrated energy source so that they may be detectable.Type: GrantFiled: July 20, 2022Date of Patent: December 5, 2023Assignee: ACTIVATED RESEARCH COMPANY, LLCInventors: Andrew Jones, Tommy Saunders, Mike Hofflander
-
Publication number: 20220365044Abstract: In the present system and method, a conduit from a LC device continuously transports solvent, buffers, and analytes to the inlet of a solvent removal and analyte conversion device which evaporates the solvents, leaving non-volatile analytes for detection. The device comprises a rotating disk. The liquid chromatograph device can be any device using liquid chromatography to separate molecules. The solvents in the LC effluent can include, but are not limited to, water, methanol, acetonitrile, tetrahydrofuran, and acetone. After removal of the volatile components, the non-volatile analytes are converted with a concentrated energy source so that they may be detectable.Type: ApplicationFiled: July 20, 2022Publication date: November 17, 2022Applicant: Activated Research Company, LLCInventors: Andrew JONES, Tommy Saunders, Mike Hofflander
-
Patent number: 11428675Abstract: In the present system and method, a conduit from a LC device continuously transports solvent, buffers, and analytes to the inlet of a solvent removal and analyte conversion device which evaporates the solvents, leaving non-volatile analytes for detection. The device comprises a rotating disk. The liquid chromatograph device can be any device using liquid chromatography to separate molecules. The solvents in the LC effluent can include, but are not limited to, water, methanol, acetonitrile, tetrahydrofuran, and acetone. After removal of the volatile components, the non-volatile analytes are converted with a concentrated energy source so that they may be detectable.Type: GrantFiled: July 29, 2019Date of Patent: August 30, 2022Assignee: Activated Research Company, LLCInventors: Andrew Jones, Tommy Saunders, Mike Hofflander
-
Patent number: 10859543Abstract: Provided is a system comprising a conduit from a gas chromatograph column to a single reactor comprising a Fe, Co, Pt, Ni, Rh, Pd and/or Ru catalyst(s), with hydrogen and oxygen feed conduits for providing hydrogen and oxygen to the reactor, and a conduit from the reactor to an FID detector. This allows one to practice a method for the detection and quantification of organic molecules from a gas chromatograph which comprises passing the effluent from a gas chromatograph column to a reactor comprising a Fe, Co, Pt, Ni, Rh, Pd and/or Ru catalyst; adding hydrogen and air/oxygen to the reactor; reacting the effluent from the gas chromatograph column in the reactor to sequentially oxidize then reduce all organic containing molecules to CH4 by heating to an elevated temperature, and passing the reactor effluent to an FID.Type: GrantFiled: January 30, 2019Date of Patent: December 8, 2020Assignee: ACTIVATED RESEARCH COMPANY, LLCInventor: Andrew Jones
-
Publication number: 20200033306Abstract: In the present system and method, a conduit from a LC device continuously transports solvent, buffers, and analytes to the inlet of a solvent removal and analyte conversion device which evaporates the solvents, leaving non-volatile analytes for detection. The device comprises a rotating disk. The liquid chromatograph device can be any device using liquid chromatography to separate molecules. The solvents in the LC effluent can include, but are not limited to, water, methanol, acetonitrile, tetrahydrofuran, an acetone. After removal of the volatile components, the non-volatile analytes are converted with a concentrated energy source so that they may be detectable.Type: ApplicationFiled: July 29, 2019Publication date: January 30, 2020Applicant: Activated Research Company, LLCInventors: Andrew JONES, Tommy Saunders, Mike Hofflander
-
Patent number: 10416129Abstract: Provided is a system comprising a device that performs one or more reactions to liquid or supercritical fluid chromatograph effluents and produces molecules that are subsequently detected by a suitable detector. This allows for one to practice a method for the detection and quantification of organic molecules from a liquid chromatograph for the purpose of increasing detection limits and allowing for the universal detection of organic molecules. The linear dynamic range and molecular response are greater than those previously available.Type: GrantFiled: November 18, 2016Date of Patent: September 17, 2019Assignee: ACTIVATED RESEARCH COMPANY, LLCInventors: Andrew Jones, Charles Spanjers
-
Publication number: 20190154640Abstract: Provided is a system comprising a conduit from a gas chromatograph column to a single reactor comprising a Fe, Co, Pt, Ni, Rh, Pd and/or Ru catalyst(s), with hydrogen and oxygen feed conduits for providing hydrogen and oxygen to the reactor, and a conduit from the reactor to an FID detector. This allows one to practice a method for the detection and quantification of organic molecules from a gas chromatograph which comprises passing the effluent from a gas chromatograph column to a reactor comprising a Fe, Co, Pt, Ni, Rh, Pd and/or Ru catalyst; adding hydrogen and air/oxygen to the reactor; reacting the effluent from the gas chromatograph column in the reactor to sequentially oxidize then reduce all organic containing molecules to CH4 by heating to an elevated temperature, and passing the reactor effluent to an FID.Type: ApplicationFiled: January 30, 2019Publication date: May 23, 2019Applicant: Activated Research Company, LLCInventor: Andrew JONES
-
Patent number: 10222356Abstract: Provided is a system comprising a conduit from a gas chromatograph column to a single reactor comprising a Fe, Co, Pt, Ni, Rh, Pd and/or Ru catalyst(s), with hydrogen and oxygen feed conduits for providing hydrogen and oxygen to the reactor, and a conduit from the reactor to an FID detector. This allows one to practice a method for the detection and quantification of organic molecules from a gas chromatograph which comprises passing the effluent from a gas chromatograph column to a reactor comprising a Fe, Co, Pt, Ni, Rh, Pd and/or Ru catalyst; adding hydrogen and air/oxygen to the reactor; reacting the effluent from the gas chromatograph column in the reactor to sequentially oxidize then reduce all organic containing molecules to CH4 by heating to an elevated temperature, and passing the reactor effluent to an FID.Type: GrantFiled: January 20, 2016Date of Patent: March 5, 2019Assignee: Activated Research Company, LLCInventor: Andrew Jones
-
Patent number: 10041913Abstract: Provided is a system comprising a conduit from a gas chromatograph column to a reactor comprising a Ru catalyst, with a hydrogen feed conduit for providing hydrogen to the conduit from the gas chromatograph column, and a conduit from the reactor to an FID detector. This allows one to practice a method for the detection and quantification of organic molecules from a gas chromatograph which comprises passing the effluent from a gas chromatograph column to a reactor comprising a Ru catalyst; adding hydrogen to the effluent prior to the effluent reaching the catalyst; reacting the effluent from the gas chromatograph column in the reactor to reduce all organic containing molecules to CH4 by heating to an elevated temperature, and passing the effluent from the reactor to an FID.Type: GrantFiled: December 30, 2015Date of Patent: August 7, 2018Assignee: Activated Research Company, LLCInventor: Andrew Jones
-
Publication number: 20170146496Abstract: Provided is a system comprising a device that performs one or more reactions to liquid or supercritical fluid chromatograph effluents and produces molecules that are subsequently detected by a suitable detector. This allows for one to practice a method for the detection and quantification of organic molecules from a liquid chromatograph for the purpose of increasing detection limits and allowing for the universal detection of organic molecules. The linear dynamic range and molecular response are greater than those previously available.Type: ApplicationFiled: November 18, 2016Publication date: May 25, 2017Applicant: Activated Research Company, LLCInventors: Andrew JONES, Charles SPANJERS
-
Publication number: 20160274072Abstract: Provided is a system comprising a conduit from a gas chromatograph column to a single reactor comprising a Fe, Co, Pt, Ni, Rh, Pd and/or Ru catalyst(s), with hydrogen and oxygen feed conduits for providing hydrogen and oxygen to the reactor, and a conduit from the reactor to an FID detector. This allows one to practice a method for the detection and quantification of organic molecules from a gas chromatograph which comprises passing the effluent from a gas chromatograph column to a reactor comprising a Fe, Co, Pt, Ni, Rh, Pd and/or Ru catalyst; adding hydrogen and air/oxygen to the reactor; reacting the effluent from the gas chromatograph column in the reactor to sequentially oxidize then reduce all organic containing molecules to CH4 by heating to an elevated temperature, and passing the reactor effluent to an FID.Type: ApplicationFiled: January 20, 2016Publication date: September 22, 2016Applicant: Activated Research Company, LLCInventor: Andrew JONES
-
Publication number: 20160187307Abstract: Provided is a system comprising a conduit from a gas chromatograph column to a reactor comprising a Ru catalyst, with a hydrogen feed conduit for providing hydrogen to the conduit from the gas chromatograph column, and a conduit from the reactor to an FID detector. This allows one to practice a method for the detection and quantification of organic molecules from a gas chromatograph which comprises passing the effluent from a gas chromatograph column to a reactor comprising a Ru catalyst; adding hydrogen to the effluent prior to the effluent reaching the catalyst; reacting the effluent from the gas chromatograph column in the reactor to reduce all organic containing molecules to CH4 by heating to an elevated temperature, and passing the effluent from the reactor to an FID.Type: ApplicationFiled: December 30, 2015Publication date: June 30, 2016Applicant: Activated Research Company, LLCInventor: Andrew Jones