Patents Assigned to Acusphere, Inc.
-
Patent number: 8821938Abstract: Drugs, especially low aqueous solubility drugs, are provided in a porous matrix form, preferably microparticles, which enhances dissolution of the drug in aqueous media. The drug matrices preferably are made using a process that includes (i) dissolving a drug, preferably a drug having low aqueous solubility, in a volatile solvent to form a drug solution, (ii) combining at least one pore forming agent with the drug solution to form an emulsion, suspension, or second solution and hydrophilic or hydrophobic excipients that stabilize the drug and inhibit crystallization, and (iii) removing the volatile solvent and pore forming agent from the emulsion, suspension, or second solution to yield the porous matrix of drug. Hydrophobic or hydrophilic excipients may be selected to stabilize the drug in crystalline form by inhibiting crystal growth or to stabilize the drug in amorphous form by preventing crystallization.Type: GrantFiled: February 8, 2011Date of Patent: September 2, 2014Assignee: Acusphere, Inc.Inventors: Julie Straub, David Altreuter, Howard Bernstein, Donald E. Chickering, III, Sarwat Khattak, Greg Randall
-
Patent number: 8586005Abstract: Clinical studies have been conducted and specific dosage formulations developed using polymeric microparticles having incorporated therein perfluorocarbon gases that provide significantly enhanced images of long duration. The dosage formulation includes microparticles formed of a biocompatible polymer, preferably including a lipid incorporated therein, and containing a perfluorocarbon that is a gas at body temperature. The microparticles are provided to a patient in an amount effective to enhance ultrasound imaging in the ventricular chambers for more than 5 minutes or in the mycocardium for more than a minute, in a dose ranging from 0.025 to 8.0 mg microparticles/kg body weight. Preferably the dose ranges from 0.05 to 4.0 mg microparticles/kg body weight. The dosage formulation typically is provided in a vial.Type: GrantFiled: August 6, 2007Date of Patent: November 19, 2013Assignee: Acusphere, Inc.Inventors: Richard Walovitch, Howard Bernstein, Donald Chickering, III, Julie Straub
-
Patent number: 8012457Abstract: Clinical studies have been conducted and specific dosage formulations developed using polymeric microparticles having incorporated therein perfluorocarbon gases that provide significantly enhanced images of long duration. The dosage formulation includes microparticles formed of a biocompatible polymer, preferably including a lipid incorporated therein, and containing a perfluorocarbon that is a gas at body temperature. The microparticles are provided to a patient in an amount effective to enhance ultrasound imaging in the ventricular chambers for more than 5 minutes or in the mycocardium for more than a minute, in a dose ranging from 0.025 to 8.0 mg microparticles/kg body weight. Preferably the dose ranges from 0.05 to 4.0 mg microparticles/kg body weight. The dosage formulation typically is provided in a vial.Type: GrantFiled: June 2, 2005Date of Patent: September 6, 2011Assignee: Acusphere, Inc.Inventors: Richard Walovitch, Howard Bernstein, Donald Chickering, Julie Straub
-
Patent number: 7919119Abstract: Drugs, especially low aqueous solubility drugs, are provided in a porous matrix form, preferably microparticles, which enhances dissolution of the drug in aqueous media. The drug matrices preferably are made using a process that includes (i) dissolving a drug, preferably a drug having low aqueous solubility, in a volatile solvent to form a drug solution, (ii) combining at least one pore forming agent with the drug solution to form an emulsion, suspension, or second solution and hydrophilic or hydrophobic excipients that stabilize the drug and inhibit crystallization, and (iii) removing the volatile solvent and pore forming agent from the emulsion, suspension, or second solution to yield the porous matrix of drug. Hydrophobic or hydrophilic excipients may be selected to stabilize the drug in crystalline form by inhibiting crystal growth or to stabilize the drug in amorphous form by preventing crystallization.Type: GrantFiled: January 22, 2002Date of Patent: April 5, 2011Assignee: Acusphere, Inc.Inventors: Julie Straub, David Altreuter, Howard Bernstein, Donald E. Chickering, III, Sarwat Khattak, Greg Randall
-
Publication number: 20100062066Abstract: A pharmaceutical composition for the oral or parenteral administration of a compound of Formula (I) comprising an oil in water emulsion, wherein the oil phase comprises the free base of or a pharmaceutically acceptable salt thereof of a compound of Formula (I), and one or more surfactants which are soluble in the oil phase and/or the aqueous phase. The emulsion optionally contains one or more excipients that are soluble in the oil phase and/or the aqueous phase, such as pH modifying agents such as buffers, osmolality/tonicity modifying agents, emulsifying agents, water-soluble polymers, and preservatives. The compound of Formula (I) can be formulated as a solid material and stored until needed. Kits for forming the emulsion are provided. Prior to administration, the solid material can be reconstituted in an aqueous medium to form the emulsion.Type: ApplicationFiled: November 8, 2007Publication date: March 11, 2010Applicant: Acusphere, IncInventors: Howard Bernstein, Olinda Carneiro, Rajeev A. Jain, Namrata Pandit, Shveta Rane, Julie Ann Straub
-
Publication number: 20070148211Abstract: A method is provided for making an oral dosage form of a pharmaceutical agent which includes the steps of (a) providing particles which include a pharmaceutical agent; (b) blending the particles with particles of a pre-processed excipient to form a primary blend, wherein the pre-processed excipient is prepared by (i) dissolving a bulking agent (e.g., a sugar) and at least one non-friable excipient (e.g., a waxy or liquid surfactant) in a solvent to form an excipient solution, and (ii) removing the solvent from the excipient solution to form the pre-processed excipient in dry powder form; (c) milling the primary blend to form a milled pharmaceutical formulation blend that includes microparticles or nanoparticles of the pharmaceutical agent; and (d) processing the milled pharmaceutical formulation blend into a solid oral dosage form or liquid suspension for oral administration. The process yields formulations having improved wettability or dispersibility.Type: ApplicationFiled: December 14, 2006Publication date: June 28, 2007Applicant: Acusphere, Inc.Inventors: David Altreuter, Howard Bernstein, Luis Brito, Shaina Brito, Donald Chickering, Eric Huang, Rajeev Jain, Sridhar Narasimhan, Julie Straub
-
Patent number: 7160557Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.Type: GrantFiled: December 6, 2000Date of Patent: January 9, 2007Assignee: Acusphere, Inc.Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
-
Patent number: 7052719Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.Type: GrantFiled: December 6, 2000Date of Patent: May 30, 2006Assignee: Acusphere, Inc.Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
-
Patent number: 6962006Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.Type: GrantFiled: December 19, 2002Date of Patent: November 8, 2005Assignee: Acusphere, Inc.Inventors: Donald E. Chickering, III, Sridhar Narasimhan, David Altreuter, Paul Kopesky, Mark Keegan, Julie A. Straub, Howard Bernstein
-
Patent number: 6932983Abstract: Drugs, especially low aqueous solubility drugs, are provided in a porous matrix form, preferably microparticles, which enhances dissolution of the drug in aqueous media. The drug matrices preferably are made using a process that includes (i) dissolving a drug, preferably a drug having low aqueous solubility, in a volatile solvent to form a drug solution, (ii) combining at least one pore forming agent with the drug solution to form an emulsion, suspension, or second solution, and (iii) removing the volatile solvent and pore forming agent from the emulsion, suspension, or second solution to yield the porous matrix of drug. The pore forming agent can be either a volatile liquid that is immiscible with the drug solvent or a volatile solid compound, preferably a volatile salt. In a preferred embodiment, spray drying is used to remove the solvents and the pore forming agent.Type: GrantFiled: November 3, 2000Date of Patent: August 23, 2005Assignee: Acusphere, Inc.Inventors: Julie Straub, Howard Bernstein, Donald E. Chichering, III, Sarwat Khattak, Greg Randall
-
Patent number: 6921458Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.Type: GrantFiled: January 7, 2004Date of Patent: July 26, 2005Assignee: Acusphere, Inc.Inventors: Donald E. Chickering, III, Sridhar Narasimhan, David Altreuter, Paul Kopesky, Mark Keegan, Julie A. Straub, Howard Bernstein
-
Patent number: 6918991Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.Type: GrantFiled: January 7, 2004Date of Patent: July 19, 2005Assignee: Acusphere, Inc.Inventors: Donald E. Chickering, III, Sridhar Narasimhan, David Altreuter, Paul Kopesky, Mark Keegan, Julie A. Straub, Howard Bernstein
-
Patent number: 6800297Abstract: One or more COX-2 inhibitors are provided in a porous matrix form wherein the dissolution rate of the drug is enhanced when the matrix is contacted with an aqueous medium. The porous matrix yields upon contact with an aqueous medium nanoparticles and microparticles of COX-2 inhibitors having a mean diameter between about 0.01 and 5 &mgr;m and a total surface area greater than about 0.5 m2/mL. The dry porous matrix preferably is in a dry powder form having a TAP density less than or equal to 1.0 g/mL. The porous COX-2 inhibitor matrices preferably are made using a process that includes (i) dissolving one or more COX-2 inhibitors in a volatile solvent to form a drug solution, (ii) combining at least one pore forming agent with the drug solution to form an emulsion, suspension, or second solution, and (iii) removing the volatile solvent and pore forming agent from the emulsion, suspension, or second solution to yield the dry porous matrix of COX-2 inhibitors.Type: GrantFiled: May 19, 2003Date of Patent: October 5, 2004Assignee: Acusphere, Inc.Inventors: David Altreuter, Julie Straub, Howard Bernstein, Donald E. Chickering, III, Paul Kopesky, Greg Randall
-
Publication number: 20040121005Abstract: One or more COX-2 inhibitors are provided in a porous matrix form wherein the dissolution rate of the drug is enhanced when the matrix is contacted with an aqueous medium. The porous matrix yields upon contact with an aqueous medium nanoparticles and microparticles of COX-2 inhibitors having a mean diameter between about 0.01 and 5 &mgr;m and a total surface area greater than about 0.5 m2/mL. The dry porous matrix preferably is in a dry powder form having a TAP density less than or equal to 1.0 g/mL. The porous COX-2 inhibitor matrices preferably are made using a process that includes (i) dissolving one or more COX-2 inhibitors in a volatile solvent to form a drug solution, (ii) combining at least one pore forming agent with the drug solution to form an emulsion, suspension, or second solution, and (iii) removing the volatile solvent and pore forming agent from the emulsion, suspension, or second solution to yield the dry porous matrix of COX-2 inhibitors.Type: ApplicationFiled: May 19, 2003Publication date: June 24, 2004Applicant: Acusphere, Inc.Inventors: David Altreuter, Julie Straub, Howard Bernstein, Donald E. Chickering, Paul Kopesky, Greg Randall
-
Patent number: 6730322Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.Type: GrantFiled: March 6, 2003Date of Patent: May 4, 2004Assignee: Acusphere, Inc.Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
-
Patent number: 6689390Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.Type: GrantFiled: March 5, 2003Date of Patent: February 10, 2004Assignee: Acusphere, Inc.Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
-
Patent number: 6645528Abstract: Drugs, especially low aqueous solubility drugs, are provided in a porous matrix form, preferably microparticles, which enhances dissolution of the drug in aqueous media. The drug matrices preferably are made using a process that includes (i) dissolving a drug, preferably a drug having low aqueous solubility, in a volatile solvent to form a drug solution, (ii) combining at least one pore forming agent with the drug solution to form an emulsion, suspension, or second solution, and (iii) removing the volatile solvent and pore forming agent from the emulsion, suspension, or second solution to yield the porous matrix of drug. The pore forming agent can be either a volatile liquid that is immiscible with the drug solvent or a volatile solid compound, preferably a volatile salt. In a preferred embodiment, spray drying is used to remove the solvents and the pore forming agent.Type: GrantFiled: October 23, 2000Date of Patent: November 11, 2003Assignee: Acusphere, Inc.Inventors: Julie Straub, Howard Bernstein, Donald E. Chickering, III, Sarwat Khattak, Greg Randall
-
Patent number: 6610317Abstract: Paclitaxel is provided in a porous matrix form, which allows the drug to be formulated without Cremophor and administered as a bolus. The paclitaxel matrices preferably are made using a process that includes (i) dissolving paclitaxel in a volatile solvent to form a paclitaxel solution, (ii) combining at least one pore forming agent with the paclitaxel solution to form an emulsion, suspension, or second solution, and (iii) removing the volatile solvent and pore forming agent from the emulsion, suspension, or second solution to yield the porous matrix of paclitaxel. The pore forming agent can be either a volatile liquid that is immiscible with the paclitaxel solvent or a volatile solid compound, preferably a volatile salt. In a preferred embodiment, spray drying is used to remove the solvents and the pore forming agent.Type: GrantFiled: March 2, 2001Date of Patent: August 26, 2003Assignee: Acusphere, Inc.Inventors: Julie Straub, Howard Bernstein, Donald E. Chickering, III, Sarwat Khattak, Greg Randall
-
Publication number: 20030147962Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.Type: ApplicationFiled: March 5, 2003Publication date: August 7, 2003Applicant: Acusphere, Inc.Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
-
Patent number: RE40493Abstract: Paclitaxel is provided in a porous matrix form, which allows the drug to be formulated without Cremophor and administered as a bolus. The paclitaxel matrices preferably are made using a process that includes (i) dissolving paclitaxel in a volatile solvent to form a paclitaxel solution, (ii) combining at least one pore forming agent with the paclitaxel solution to form an emulsion, suspension, or second solution, and (iii) removing the volatile solvent and pore forming agent from the emulsion, suspension, or second solution to yield the porous matrix of paclitaxel. The pore forming agent can be either a volatile liquid that is immiscible with the paclitaxel solvent or a volatile solid compound, preferably a volatile salt. In a preferred embodiment, spray drying is used to remove the solvents and the pore forming agent.Type: GrantFiled: August 26, 2005Date of Patent: September 9, 2008Assignee: Acusphere, Inc.Inventors: Julie A. Straub, Howard Bernstein, Donald E. Chickering, III, Sarwat Khattak, Greg Randall