Abstract: Methods are provided for producing monoclonal antibody candidates using adaptive immunity profiling. In some aspects, the method provides for the use of massively parallel signature sequencing.
Abstract: The invention is directed to methods for detecting and quantifying nucleic acid contamination in a tissue sample of an individual containing T cells and/or B cells, which is used for generating a sequence-based clonotype profile. In one aspect, the invention is implemented by measuring the presence and/or level of an endogenous or exogenous nucleic acid tag by which nucleic acid from an intended individual can be distinguished from that of unintended individuals. Endogenous tags include genetic identity markers, such as short tandem repeats, rare clonotypes or the like, and exogenous tags include sequence tags employed to determine clonotype sequences from sequence reads.
Type:
Grant
Filed:
April 9, 2013
Date of Patent:
July 19, 2016
Assignee:
ADAPTIVE BIOTECHNOLOGIES CORPORATION
Inventors:
Thomas Asbury, Victoria Carlton, Malek Faham, Stephen C. Macevicz, Martin Moorhead, Thomas Willis, Jianbiao Zheng
Abstract: Compositions and methods are described for highly sensitive quantification of the relative representation of DNA from adaptive immune cells (e.g., T and/or B lymphocytes) in DNA extracted from complex mixtures of cells that include cells which are not adaptive immune cells. Included are methods for determining the relative presence in a tumor of tumor infiltrating lymphocytes (TIL), the relative presence of lymphocytes infiltrating a somatic tissue that is the target of an autoimmune disease, and the relative presence of lymphocytes infiltrating a transplanted organ.
Type:
Grant
Filed:
October 19, 2012
Date of Patent:
March 8, 2016
Assignees:
ADAPTIVE BIOTECHNOLOGIES CORPORATION, FRED HUTCHINSON CANCER RESEARCH CENTER
Inventors:
Harlan S. Robins, Robert J. Livingston, Jason H. Bielas
Abstract: Compositions and methods are described for highly sensitive quantification of the relative representation of DNA from adaptive immune cells (e.g., T and/or B lymphocytes) in DNA extracted from complex mixtures of cells that include cells which are not adaptive immune cells. Included are methods for determining the relative presence in a tumor of tumor infiltrating lymphocytes (TIL), the relative presence of lymphocytes infiltrating a somatic tissue that is the target of an autoimmune disease, and the relative presence of lymphocytes infiltrating a transplanted organ.
Abstract: Compositions and methods are described for highly sensitive quantification of the relative representation of DNA from adaptive immune cells (e.g., T and/or B lymphocytes) in DNA extracted from complex mixtures of cells that include cells which are not adaptive immune cells. Included are methods for determining the relative presence in a tumor of tumor infiltrating lymphocytes (TIL), the relative presence of lymphocytes infiltrating a somatic tissue that is the target of an autoimmune disease, and the relative presence of lymphocytes infiltrating a transplanted organ.
Abstract: Compositions and methods are described for highly sensitive quantification of the relative representation of DNA from adaptive immune cells (e.g., T and/or B lymphocytes) in DNA extracted from complex mixtures of cells that include cells which are not adaptive immune cells. Included are methods for determining the relative presence in a tumor of tumor infiltrating lymphocytes (TIL), the relative presence of lymphocytes infiltrating a somatic tissue that is the target of an autoimmune disease, and the relative presence of lymphocytes infiltrating a transplanted organ.
Type:
Application
Filed:
October 19, 2012
Publication date:
October 31, 2013
Applicants:
FRED HUTCHINSON CANCER RESEARCH CENTER, ADAPTIVE BIOTECHNOLOGIES CORPORATION
Inventors:
ADAPTIVE BIOTECHNOLOGIES CORPORATION, FRED HUTCHINSON CANCER RESEARCH CEN
Abstract: Methods are described for diagnosis of a lymphoid hematological malignancy in a subject prior to treatment, and for detecting minimal residual disease (MRD) in the subject after treatment for the malignancy, by high throughput quantitative sequencing (HTS) of multiple unique adaptive immune receptor (TCR or Ig) encoding DNA molecules that have been amplified from DNA isolated from blood samples or other lymphoid cell-containing samples. Amplification employs oligonucleotide primer sets designed to amplify CDR3-encoding sequences within substantially all possible human VDJ or VJ combinations. Disease-characteristic adaptive immune receptor clonotypes occur, prior to treatment, at a relative frequency of at least 15-30% of rearranged receptor CDR3-encoding gene regions. Following treatment, persistence of at least one such clonotype at a detectable frequency of at least 10?6 or at least 10?5 receptor CDR3-encoding regions indicates MRD.