Abstract: The presented device is an orthopedic spinal cage that is inserted from an anteriorly aspect into a patient's intervertebral disc space. The device includes a cage to maintain vertebral separation and allow for fusion. Threaded screws allow for a matting and lag feature to prevent screw back out, provide a tactile event once fully inserted, and then to provide a stepped feature for reliable screw removal with minimal axial force. These features may be adapted to any orthopedic or other application requiring the thread screw features.
Type:
Application
Filed:
April 26, 2017
Publication date:
November 1, 2018
Applicant:
Additive Innovations, LLC
Inventors:
Nicholas Michael Cordaro, Robert Compton
Abstract: This device is intended for orthopedic applications, particularly to treat a pars interarticularis fracture. The device is highly specialized to treat a common pars fracture with a uniquely contoured device that stabilizes the inferior fractured element with a generally conforming and non-linear hooked surface then transcribing the pars fracture to rigidly attach to the cortical bone between the facet and pedicle bones while applying compression across the fraction for fracture healing and stabilization.
Abstract: Disclosed herein is an orthopedic implant device comprising a porous structure, approximating the shape of a bone, and having modulus of elasticity similar to that of said bone. Further disclosed herein is a method of treating injuries or diseases affecting bones or muscles comprising providing an orthopedic implant device, wherein the orthopedic implant device comprising a porous structure, approximating the shape of a bone, and having a modulus of elasticity similar to that of bone, and using the orthopedic implant device to treat injuries and diseases affecting bones and muscles in a mammal. Further disclosed herein is a method of manufacturing an orthopedic implant device using an additive manufacturing method comprising the steps: (a) providing a 3-dimensional model of the orthopedic implant device; (b) inputting the 3-dimensional model to an additive manufacturing device; and (c) using the additive manufacturing device to manufacture the orthopedic implant device.
Abstract: Disclosed herein is an orthopedic implant device comprising a porous structure, approximating the shape of a bone, and having modulus of elasticity similar to that of said bone. In one embodiment, further disclosed herein is a method of treating injuries or diseases affecting bones or muscles comprising providing an orthopedic implant device, wherein the orthopedic implant device comprising a porous structure, approximating the shape of a bone, and having a modulus of elasticity similar to that of bone, and using the orthopedic implant device to treat injuries and diseases affecting bones and muscles in a mammal. In another embodiment, disclosed herein is a method of manufacturing an orthopedic implant device using an additive manufacturing (AM) method.