Patents Assigned to Administration
  • Patent number: 9964699
    Abstract: Disclosed herein are systems and methods related to use of hollow core photonic crystal fibers. A system includes a tube and a collimating lens configured in a first end of the tube, wherein a single mode fiber is coupled to a first end of the collimating lens. A second lens is supported by a structure at a second end of the tube, the second lens receiving a first signal from a second end of the collimating lens and outputting a second signal that is coupled into a first end of a hollow core photonic crystal fiber. A first gas tube is configured to introduce gas through the structure into a chamber and a sealant seals at least one of the collimating lens and the structure within the tube. An output signal is received at a detector that catches the entire beam to suppress multiple-mode beating noise.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: May 8, 2018
    Assignee: The United States of America, as represented by the Administrator of the National Aeronautics and Space Administraion
    Inventors: Jeffrey R. Chen, Kenji Numata, Stewart T. Wu
  • Patent number: 9963345
    Abstract: A method of fabricating a composite material includes utilizing a radio frequency plasma process to form a plasma plume comprising nanoparticles. The nanoparticles may comprise boron nitride nanoparticles, silicon carbide nanoparticles, beryllium oxide nanoparticles, or carbon nanoparticles. The nanoparticles may comprise nanotubes or other particles depending on the requirements of a particular application. The nanoparticles are deposited on a substrate by directing a plasma plume towards the substrate. The nanoparticles are formed in the plasma plume immediately prior to being deposited on the substrate. The nanoparticles may form a mechanical bond with the fibers in addition to a chemical bond in the absence of a catalyst. The substrate may comprise a fiber fabric that may optionally be coated with a thin layer of metal. Alternatively, the substrate may comprise a solid material such as a metal sheet or plate.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 8, 2018
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Stephen J. Hales, Joel A. Alexa, Brian J. Jensen, Roberto J. Cano, Peter T. Lillehei
  • Patent number: 9957336
    Abstract: Various embodiments provide dye-doped polystyrene microspheres generated using dispersion polymerization. Polystyrene microspheres may be doped with fluorescent dyes, such as xanthene derivatives including kiton red 620 (KR620), using dispersion polymerization. Certain functionalities, such as sodium styrene sulfonate, may be used to shift the equilibrium distribution of dye molecules to favor incorporation of the dye into the particles. Polyelectrolyte materials, such as poly(diallyldimethyl ammonium chloride), PolyDADMAC, may be used to electrostatically trap and bind dye molecules within the particles. A buffer may be used to stabilize the pH change of the solution during dye-doped polystyrene microsphere generation and the buffer may be selected depending on the pKa of the dye being incorporated. The various embodiments may provide dye-doped polystyrene microspheres, such as KR620-doped polystyrene microspheres that are non-toxic and non-carcinogenic.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: May 1, 2018
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Christopher J. Wohl, Jr., Pacita I. Tiemsin, Paul M. Danehy, Jason E. Danley
  • Patent number: 9960288
    Abstract: Some implementations provide a device (e.g., solar panel) that includes an active layer and a solar absorbance layer. The active layer includes a first N-type layer and a first P-type layer. The solar absorbance layer is coupled to a first surface of the active layer. The solar absorbance layer includes a polymer composite. In some implementations, the polymer composite includes one of at least metal salts and/or carbon nanotubes. In some implementations, the active layer is configured to provide the photovoltaic effect. In some implementations, the active layer further includes a second N-type layer and a second P-type layer. In some implementations, the active layer is configured to provide the thermoelectric effect. In some implementations, the device further includes a cooling layer coupled to a second surface of the active layer. In some implementations, the cooling layer includes one of at least zinc oxides, indium oxides, and/or carbon nanotubes.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: May 1, 2018
    Assignee: The United State of America as represented by the Administrator of NASA
    Inventors: Jin Ho Kang, Chase Taylor, Cheol Park, Godfrey Sauti, Luke Gibbons, Iseley Marshall, Sharon E. Lowther, Peter T. Lillehei, Joycelyn S. Harrison, Robert G. Bryant
  • Publication number: 20180113211
    Abstract: Disclosed is a remote observation system including: a radar for calculating a rain cloud profile; a GNSS for calculating total rain cloud profiles; a radiometer for calculating a light cloud profile; and a lidar for calculating an aerosol profile. The remote observation method according to the present invention includes: the first step of calculating a rain cloud profile by means of a radar; the second step of calculating total rain cloud profiles by means of a GNSS; the third step of calculating a light cloud profile by means of a radiometer; and the fourth step for calculating an aerosol profile by means of a lidar.
    Type: Application
    Filed: November 22, 2016
    Publication date: April 26, 2018
    Applicant: Korea Meteorological Administration
    Inventors: Dong Oh Park, Ki-Ho Chang, Miyoung Kang, Seongkyu Seo, Baek-Jo Kim
  • Publication number: 20180114450
    Abstract: An autonomous emergency flight management system may find safe and clear landing sites for unmanned aerial systems (UASs) in emergency situations. Emergency flight management software may reside on an onboard computing system. The computing system may continuously look at internal databases and input from other systems (e.g., a global positioning system (GPS), camera, compass, radar, sonar, etc.), depending on what is available. The emergency flight management system may make decisions on its own without human intervention. For instance, a database may provide some local likely candidates for landing sites. Information associated with the candidates may include latitude, longitude, altitude for top of a building, etc. Position updates may be continuously provided from an autopilot or other suitable system.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 26, 2018
    Applicant: U.S.A., as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Patricia C. Glaab, Louis J. Glaab
  • Patent number: 9949924
    Abstract: The present invention provides a pharmaceutical composition formulated for oral delivery, comprising a particulate non-covalently associated mixture of pharmacologically inert silica nanoparticles having a hydrophobic surface, a polysaccharide, and a biologically active protein or peptide suspended in an oil. The present invention further provides methods of manufacturing same and therapeutic methods utilizing same for oral delivery of a therapeutic protein or peptide.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: April 24, 2018
    Assignee: Oshadi Drug Administration Ltd.
    Inventors: Alexander Vol, Orna Gribova
  • Patent number: 9954613
    Abstract: Light is used to communicate between objects separated by a large distance. Light beams are received in a telescopic lens assembly positioned in front of a cat's-eye lens. The light can thereby be received at various angles to be output by the cat's-eye lens to a focal plane of the cat's-eye lens, the position of the light beams upon the focal plane corresponding to the angle of the beam received. Lasers and photodetectors are distributed along this focal plane. A processor receives signals from the photodetectors, and selectively signal lasers positioned proximate the photodetectors detecting light, in order to transmit light encoding data through the cat's-eye lens and also through a telescopic lens back in the direction of the received light beams, which direction corresponds to a location upon the focal plane of the transmitting lasers.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: April 24, 2018
    Assignee: The United States of America as Represented by the Administrator of NASA
    Inventor: Peter M. Goorjian
  • Publication number: 20180106887
    Abstract: Disclosed is an apparatus for calibrating and validating an MRR, the apparatus including a correlation calculation unit configured to determine a correlation between a precipitation strength value and a precipitation measurement value, a regression equation calculation unit configured to calculate a regression equation for the precipitation strength value and to calculate a result value of the regression equation, an optimum accumulation time determination unit configured to determine an optimum accumulation time based on the correlation and the result value, a rain cloud vertical sampling unit configured to sample a rain cloud example, a vertical reflectance comparison unit configured to compare a calibrated MRR at a shortest range distance with a vertical reflectance according to a wind system, and a radar constant correction unit configured to correct a constant of an MRR based on the optimum value or the sampling and a result value of the comparison.
    Type: Application
    Filed: November 22, 2016
    Publication date: April 19, 2018
    Applicant: Korea Meteorological Administration
    Inventors: Jeong Hwan Choi, Ki-Ho Chang, Jin-Yim Jeong, Ha Young YANG, Miyoung Kang, Baek-Jo Kim
  • Patent number: 9944410
    Abstract: The invention is a system and method of air launching a powered launch vehicle into space or high altitude. More specifically, the invention is a tow aircraft which tows an unpowered glider, with the powered launch vehicle attached thereto, to launch altitude. The powered launch vehicle is released from the unpowered glider and powered on for launch.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: April 17, 2018
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Gerald D Budd
  • Publication number: 20180102457
    Abstract: The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 12, 2018
    Applicants: NthDegree Technologies Worldwide Inc., U.S. Government as represented by the Administrator of the National Aeronautics and Spac
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 9938023
    Abstract: A system, method, and computer-readable storage devices for a 6U CubeSat with a magnetometer boom. The example 6U CubeSat can include an on-board computing device connected to an electrical power system, wherein the electrical power system receives power from at least one of a battery and at least one solar panel, a first fluxgate sensor attached to an extendable boom, a release mechanism for extending the extendable boom, at least one second fluxgate sensor fixed within the satellite, an ion neutral mass spectrometer, and a relativistic electron/proton telescope. The on-board computing device can receive data from the first fluxgate sensor, the at least one second fluxgate sensor, the ion neutral mass spectrometer, and the relativistic electron/proton telescope via the bus, and can then process the data via an algorithm to deduce a geophysical signal.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: April 10, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Charles E. Clagett, Luis H. Santos Soto, Scott V. Hesh, Scott R. Starin, Salman I. Sheikh, Michael Hesse, Nikolaos Paschalidis, Michael A. Johnson, Aprille J. Ericsson
  • Patent number: 9940329
    Abstract: A system, method and computer-readable storage devices for providing a climate data persistence service. A system configured to provide the service can include a climate data server that performs data and metadata storage and management functions for climate data objects, a compute-storage platform that provides the resources needed to support a climate data server, provisioning software that allows climate data server instances to be deployed as virtual climate data servers in a cloud computing environment, and a service interface, wherein persistence service capabilities are invoked by software applications running on a client device. The climate data objects can be in various formats, such as International Organization for Standards (ISO) Open Archival Information System (OAIS) Reference Model Submission Information Packages, Archive Information Packages, and Dissemination Information Packages.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: April 10, 2018
    Assignee: The United States of America, as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John L. Schnase, Daniel Q. Duffy, Glenn S. Tamkin, Mark McInerney, Denis Nadeau, John H. Thompson, Scott Sinno, Savannah L. Strong, William David Ripley, III
  • Patent number: 9933687
    Abstract: An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: April 3, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Mark A. Stephen
  • Publication number: 20180082001
    Abstract: Disclosed is a method including a first step for executing, by a numerical simulation execution unit, numerical simulations on an artificial precipitation experiment according to a dispersed seeding material, a second step for calculating, by a spread field information calculation unit, spread field information about the seeding material from the results of the numerical simulations, a third step for calculating, by a point dispersion time range calculation unit, a spread time range of the seeding material for one or more observation points based on the calculated spread field information about the seeding material, and a fourth step for displaying, by a time-series display unit, the spread time range of the seeding material in observation data time series at each of the observation points.
    Type: Application
    Filed: November 22, 2016
    Publication date: March 22, 2018
    Applicant: Korea Meteorological Administration
    Inventors: Ha Young YANG, Ki-Ho Chang, Sanghee Chae, Areum Ko, Seongkyu Seo, Jiwon Choi, Jin-Yim Jeong, Baek-Jo Kim
  • Patent number: 9922372
    Abstract: A disclosed system, method and computer readable storage medium includes mechanism for controlling cascade price movements in an electronic trading system. Price limits control the prices at which traders can place orders. An upper price limit prevents traders from placing orders above the upper limit and a lower price limit prevents traders from placing orders below the lower limit. The gap between the upper limit and the indicative market price as well as the gap between lower limit and the indicative market price is controlled so as to cause a breaking effect on very rapidly changing market price.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: March 20, 2018
    Assignee: LIFFE Administration and Management
    Inventors: Robert James Fuller, Steven John Katesmark, Christopher Roy Harrison
  • Patent number: 9921099
    Abstract: The present invention relates to a space-based instrument which provides continuous coronal electron temperature and velocity images, for a predetermined period of time, thereby improving the understanding of coronal evolution and how the solar wind and Coronal Mass Ejection transients evolve from the low solar atmosphere through the heliosphere for an entire solar rotation. Specifically, the present invention relates to using a 6U spherical occulter coronagraph CubeSat, and a relative navigational system (RNS) that controls the position of the spacecraft relative to the occulting sphere. The present invention innovatively deploys a free-flying spherical occulter, and after deployment, the actively controlled CubeSat will provide an inertial formation flying with the spherical occulter and Sun.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: March 20, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Joseph M. Davila, Douglas M. Rabin, Nelson Reginald, Qian Gong, Neerav Shah, Phillip C. Chamberlin
  • Patent number: 9911544
    Abstract: A metal oxide vertical graphene hybrid supercapacitor is provided. The supercapacitor includes a pair of collectors facing each other, and vertical graphene electrode material grown directly on each of the pair of collectors without catalyst or binders. A separator may separate the vertical graphene electrode materials.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: March 6, 2018
    Assignee: The United States of America as Represented by the Administrator of NASA
    Inventor: Meyya Meyyappan
  • Patent number: 9908962
    Abstract: Methods are provided to produce new mechanoresponsive healing systems. Additionally, various embodiments provide a two tier self-healing material system concept that provides a non-intrusive method to mitigate impact damage in a structure ranging from low velocity impact damage (e.g., crack damage) to high velocity impact damage (e.g., ballistic damage.) The various embodiments provide the mechanophore linked polymer PBG-BCB-PBG. The various embodiments provide methods for synthesizing PBG-BCB-PBG.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: March 6, 2018
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi
  • Patent number: 9908642
    Abstract: A thermal protection system (TPS) comprising a mixture of silicon carbide and SiOx that has been converted from Si that is present in a collection of diatom frustules and at least one diatom has quasi-periodic pore-to-pore separation distance d(p-p) in a selected range. Where a heat shield comprising the converted SiC/SiOx frustules receives radiation, associated with atmospheric (re)entry, a portion of this radiation is reflected so that radiation loading of the heat shield is reduced.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: March 6, 2018
    Assignee: The United States of America as Represented by the Administrator of NASA
    Inventors: Sylvia M. Johnson, John W. Lawson, Thomas H. Squire, Michael Gusman