Patents Assigned to Administration
  • Patent number: 9632491
    Abstract: A reconfigurable drive current system includes drive stages, each of which includes a high-side transistor and a low-side transistor in a totem pole configuration. A current monitor is coupled to an output of each drive stage. Input channels are provided to receive input signals. A processor is coupled to the input channels and to each current monitor for generating at least one drive signal using at least one of the input signals and current measured by at least one of the current monitors. A pulse width modulation generator is coupled to the processor and each drive stage for varying the drive signals as a function of time prior to being supplied to at least one of the drive stages.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: April 25, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Dean C. Alhorn, Kenneth R. Dutton, David E. Howard, Dennis A. Smith
  • Patent number: 9633567
    Abstract: The present invention is a system and method for aircraft ground collision avoidance (iGCAS) comprising a modular array of software, including a sense own state module configured to gather data to compute trajectory, a sense terrain module including a digital terrain map (DTM) and map manger routine to store and retrieve terrain elevations, a predict collision threat module configured to generate an elevation profile corresponding to the terrain under the trajectory computed by said sense own state module, a predict avoidance trajectory module configured to simulate avoidance maneuvers ahead of the aircraft, a determine need to avoid module configured to determine which avoidance maneuver should be used, when it should be initiated, and when it should be terminated, a notify Module configured to display each maneuver's viability to the pilot by a colored GUI, a pilot controls module configured to turn the system on and off, and an avoid module configured to define how an aircraft will perform avoidance maneuv
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: April 25, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Mark A Skoog, Kevin Prosser, Loyd Hook
  • Patent number: 9630093
    Abstract: Method for physiologically modulating videogames and simulations includes utilizing input from a motion-sensing video game system and input from a physiological signal acquisition device. The inputs from the physiological signal sensors are utilized to change the response of a user's avatar to inputs from the motion-sensing sensors. The motion-sensing system comprises a 3D sensor system having full-body 3D motion capture of a user's body. This arrangement encourages health-enhancing physiological self-regulation skills or therapeutic amplification of healthful physiological characteristics. The system provides increased motivation for users to utilize biofeedback as may be desired for treatment of various conditions.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 25, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Alan T. Pope, Chad L. Stephens, Tyler Habowski
  • Patent number: 9625886
    Abstract: A conditionally active limit regulator may be used to regulate the performance of engines or other limit regulated systems. A computing system may determine whether a variable to be limited is within a predetermined range of a limit value as a first condition. The computing system may also determine whether a current rate of increase or decrease of the variable to be limited is great enough that the variable will reach the limit within a predetermined period of time with no other changes as a second condition. When both conditions are true, the computing system may activate a simulated or physical limit regulator.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: April 18, 2017
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Sanjay Garg, Ryan D. May
  • Patent number: 9623324
    Abstract: New types of controllers allow a player to make inputs to a video game or simulation by moving the entire controller itself or by gesturing or by moving the player's body in whole or in part. This capability is typically accomplished using a wireless input device having accelerometers, gyroscopes, and a camera. The present invention exploits these wireless motion-sensing technologies to modulate the player's movement inputs to the videogame based upon physiological signals. Such biofeedback-modulated video games train valuable mental skills beyond eye-hand coordination. These psychophysiological training technologies enhance personal improvement, not just the diversion, of the user.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 18, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Alan T. Pope, Chad L. Stephens, Nina Marie Blanson
  • Patent number: 9620025
    Abstract: A wake vortex avoidance system includes a microphone array configured to detect low frequency sounds. A signal processor determines a geometric mean coherence based on the detected low frequency sounds. A display displays wake vortices based on the determined geometric mean coherence.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: April 11, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration.
    Inventors: Qamar A. Shams, Allan J. Zuckerwar, Howard K. Knight
  • Patent number: 9620888
    Abstract: A debris exclusion and removal system for connectors which have a filament barrier configuration designed to clean connectors as they are mated together.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: April 11, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ivan I. Townsend, III, Robert P. Mueller, Adam G. Dokos
  • Patent number: 9617069
    Abstract: The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 11, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: James E. Fesmire
  • Patent number: 9614026
    Abstract: An electronic device includes a trigonal crystal substrate defining a (0001) C-plane. The substrate may comprise Sapphire or other suitable material. A plurality of rhombohedrally aligned SiGe (111)-oriented crystals are disposed on the (0001) C-plane of the crystal substrate. A first region of material is disposed on the rhombohedrally aligned SiGe layer. The first region comprises an intrinsic or doped Si, Ge, or SiGe layer. The first region can be layered between two secondary regions comprising n+doped SiGe or n+doped Ge, whereby the first region collects electrons from the two secondary regions.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 4, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Sang Hyouk Choi, Yeonjoon Park, Glen C. King, Hyun-Jung Kim, Kunik Lee
  • Patent number: 9599497
    Abstract: The present invention is a system and method of visualizing fluid flow around an object, such as an aircraft or wind turbine, by aligning the object between an imaging system and a celestial object having a speckled background, taking images, and comparing those images to obtain fluid flow visualization.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: March 21, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Edward A Haering, Jr., Michael A Hill
  • Patent number: 9601391
    Abstract: A method and system are provided for determining mechanical stress experienced by a film during fabrication thereof on a substrate positioned in a vacuum deposition chamber. The substrate's first surface is disposed to have the film deposited thereon and the substrate's opposing second surface is a specular reflective surface. A portion of the substrate is supported. An optical displacement sensor is positioned in the vacuum deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface. During film deposition on the substrate's first surface, displacement of the portion of the substrate's second surface is measured using the optical displacement sensor. The measured displacement is indicative of a radius of curvature of the substrate, and the radius of curvature is indicative of mechanical stress being experienced by the film.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: March 21, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: David M. Broadway
  • Patent number: 9598694
    Abstract: The present invention relates to the involvement of miR function in the development of age-related macular degeneration (AMD). It is shown that miR-23, miR-24 and/or miR-27 are involved in pathologic neovascularization in AMD, and that agonism (miR-24) and inhibition (miR23/27) of the function of these molecules blocks events contributing to development and progression of disease.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: March 21, 2017
    Assignees: The Board of Regents of the University of Texas System, The Administrators of the Tulane Educational Fund
    Inventors: Shusheng Wang, Eric Olson, Qinbo Zhou
  • Patent number: 9592923
    Abstract: A low-density article comprising a flexible substrate and a pyrolizable material impregnated therein, methods of preparing, and devices using the article are disclosed. The pyrolizable material pyrolizes above 350 C and does not flow at temperatures below the pyrolysis temperature. The low-density article remains flexible after impregnation and continues to remain flexible when the pyrolizable material is fully pyrolized.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: March 14, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Margaret M. Stackpoole, Ehson M. Ghandehari, Jeremy J. Thornton, Melmoth Alan Covington
  • Patent number: 9586814
    Abstract: A monochloramine microsensor includes an elongated housing defining a central axis and an open interior and having a capillary opening at one end. A semi-permeable membrane covers the capillary opening, the semi-permeable membrane allowing diffusion of chloramines there-through while preventing water from entering into the interior of the housing. A chloramine sensitive element in the form of a wire, fiber or nanotube is mounted within the housing, the chloramine sensitive element, when used in conjunction with an anode, outputs current in an amount proportional to the concentration of chloramine present in a liquid sample in which the chloramine sensitive element is immersed. The chloramine sensitive element extends along a length of the central axis to a first end adjacent to and spaced from the semi-permeable membrane. The chloramine sensitive element is a gold wire, a platinum wire, a carbon fiber or a carbon nanotube.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: March 7, 2017
    Assignee: The United States of America as represented by the Administrator of the Environmental Protection Agency
    Inventors: Jonathan G. Pressman, Woo Hyoung Lee, David G. Wahman
  • Patent number: 9587089
    Abstract: Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: March 7, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Dennis C. Working, Emilie J. Siochi, Joycelyn S. Harrison
  • Patent number: 9579090
    Abstract: The present invention provides a multi-function laparoscopic surgical instrument that meets niche needs in the expanding field of Minimally Invasive Surgery (MIS). A preferred embodiment of the present invention comprises a sheath that may be inserted into a patient, wherein the sheath contains at least two interchangeable surgical instruments that may be advanced into or retracted from the patient through a single outlet in the sheath. It is intended for use in laparoscopic and thoracoscopic surgical procedures, including intra-abdominal, intra-thoracic, intra-pelvic and arthroscopic MIS procedures, and is particularly well suited to single incision laparoscopic surgery and Natural Orifice Translumenal Endoscopic Surgery (NOTES).
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 28, 2017
    Assignee: The Administrators of the Tulane Educational Fund
    Inventors: Eric Simms, Joseph Young, Jordan Vance
  • Patent number: 9583018
    Abstract: A RiG may simulate visual conditions of a real world environment, and generate the necessary amount of pixels in a visual simulation at rates up to 120 frames per second. RiG may also include a database generation system capable of producing visual databases suitable to drive the visual fidelity required by the RiG.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: February 28, 2017
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John L. Archdeacon, Nelson H. Iwai, Kenji H. Kato, Barbara T. Sweet
  • Patent number: 9579867
    Abstract: Disclosed is a single wall carbon nanotube (SWCNT) film electrode (FE), all-organic electroactive device systems fabricated with the SWNT-FE, and methods for making same. The SWCNT can be replaced by other types of nanotubes. The SWCNT film can be obtained by filtering SWCNT solution onto the surface of an anodized alumina membrane. A freestanding flexible SWCNT film can be collected by breaking up this brittle membrane. The conductivity of this SWCNT film can advantageously be higher than 280 S/cm. An electroactive polymer (EAP) actuator layered with the SWNT-FE shows a higher electric field-induced strain than an EAP layered with metal electrodes because the flexible SWNT-FE relieves the restraint of the displacement of the polymeric active layer as compared to the metal electrode. In addition, if thin enough, the SWNT-FE is transparent in the visible light range, thus making it suitable for use in actuators used in optical devices.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: February 28, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jin Ho Kang, Cheol Park, Joycelyn S. Harrison
  • Patent number: 9577177
    Abstract: A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: February 21, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ari D. Brown, Vilem Mikula
  • Patent number: 9574080
    Abstract: Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 21, 2017
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Kenneth Street, Oleg A Voronov, Bernard H Kear