Patents Assigned to Advance Materials Products, Inc. (ADMA Products, Inc.)
  • Publication number: 20140209533
    Abstract: The present invention relates to design and manufacture of multilayer sintered membranes made from metals and inorganic compounds (ceramics, silicate, clay, zeolites, phosphates, etc.). The membranes are designated for separation of water. They comprise at least one layer having nanopores commensurable with the size of water molecules. The membranes comprise: (a) supporting metallic layer having pore size 1-500 microns, (b) metallic interlayer having pore size <2 micron, (c) sublayer with local regular protrusions of the interlayer into the supporting layer to increase service life of the membrane, and (d) one nanoporous ceramic or metallic top layer having pore size in the range of 1-15 angstroms. The invented design and method allow the manufacture of cost-effective multilayer membranes containing nanoporous layer with controlled pore sizes in each layer and optimal morphology of pores that provides selective transport of molecules during filtration and separation of liquids.
    Type: Application
    Filed: January 26, 2013
    Publication date: July 31, 2014
    Applicant: Advance Materials Products, Inc. (ADMA Products, Inc.)
    Inventors: Mykhailo Matviychuk, Volodymyr A. Duz, Vladimir S. Moxson
  • Publication number: 20130315773
    Abstract: The invention relates to energy-saving manufacturing of purified hydrogenated titanium powders or alloying titanium hydride powders, by metallo-thermic reduction of titanium chlorides, including their hydrogenation, vacuum separation of titanium hydride sponge block from magnesium and magnesium chlorides, followed by crushing, grinding, and sintering of said block without need for hydrometallurgical treatment of the produced powders. Methods disclosed contain embodiments of processes for manufacturing high-purity powders and their use in manufacturing near-net shape titanium and titanium-alloy articles by sintering titanium hydride and alloyed titanium hydride powders produced from combined hydrogen-magnesium reduction of titanium chlorides, halides and hydrides of other metals.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 28, 2013
    Applicant: Advance Materials Products, Inc. (ADMA Products, Inc.)
    Inventors: Vladimir S. Moxson, Volodymyr A. Duz, Andrey G. Klevtsov, Viktor D. Sukhoplyuyev, Mihajlo D. Sopka, Yury V. Shuvalov, Mykhailo Matviychuk
  • Publication number: 20120058002
    Abstract: A process including: (a) forming a powder blend by mixing titanium powders, (b) consolidating the powder blend by compacting to provide a green compact, (c) heating the green compact thereby releasing absorbed water from the titanium powder, (d) forming ?-phase titanium and releasing atomic hydrogen from the hydrogenated titanium by heating the green compact in an atmosphere of hydrogen emitted by the hydrogenated titanium, (e) reducing surface oxides on particles of the titanium powder with atomic hydrogen released by heating of the green compact, (f) diffusion-controlled chemical homogenizing of the green compact and densification of the green compact by heating followed by holding resulting in complete or partial dehydrogenation to form a cleaned and refined compact, (g) heating the cleaned and refined green compact in vacuum thereby sintering titanium to form a sintered dense compact, and (h) cooling the sintered dense compact to form a sintered near-net shaped article.
    Type: Application
    Filed: August 8, 2011
    Publication date: March 8, 2012
    Applicant: Advance Material Products, Inc.,(ADMA Products, Inc.)
    Inventors: Orest M. IVASISHIN, Dmitro G. SAVVAKIN, Vladimir S. MOXSON, Vladimir A. DUZ, Mykola M. GUMENYAK
  • Publication number: 20100074788
    Abstract: The invention is suitable for the manufacture of flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, etc. The method for manufacturing TMCC is comprised of the following steps: (a) preparing a basic powdered blend containing matrix alloy or titanium powders, dispersing ceramic and/or intermetallic powders, and powders of said complex carbide- and/or silicide particles, (b) preparing the Al—V master alloy containing ?5 wt. % of iron, (c) preparing the Al—V—Fe master alloy fine powder having a particle size of ?20 ?m, (d) mixing the basic powdered blend with the master alloy powder to obtain a chemical composition of TMCC, (e) compacting the powder mixture at room temperature, (f) sintering at the temperature which provides at least partial dissolution of dispersed powders, (g) forging at 1500-2300° F., and (h) cooling.
    Type: Application
    Filed: November 19, 2009
    Publication date: March 25, 2010
    Applicant: Advance Material Products Inc.(ADMA Products, Inc.)
    Inventors: Vladimir S. Moxson, Volodymyr A. Duz, Alexander E. Shapiro
  • Publication number: 20070269331
    Abstract: The invention is suitable for the manufacture of flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as for sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. A fully-dense discontinuously-reinforced titanium matrix composite (TMMC) material comprises (a) a matrix of titanium or titanium alloy as a major component, (b) ceramic and/or intermetallic hard particles dispersed in the matrix in the amount of ?50 vol. %, and (c) complex carbide- and/or silicide particles at least partially soluble in the matrix at the sintering or forging temperatures such as Ti4Cr3C6, Ti3SiC2, Cr3C2, Ti3AlC2, Ti2AlC, Al4C3, Al4SiC4, Al4Si2C5, Al8SiC7, V2C, (Ti,V)C, VCr2C2, and V2Cr4C3 dispersed in the matrix in the amount of ?20 vol. %.
    Type: Application
    Filed: December 27, 2003
    Publication date: November 22, 2007
    Applicant: Advance Materials Products, Inc. (ADMA Products, Inc.)
    Inventors: Vladimir Moxson, Volodymyr Duz, Alexander Shapiro