Abstract: An exemplary intraneural stimulation system may include an auditory prosthesis configured to be implanted within a patient, an intracochlear electrode array communicatively coupled to the auditory prosthesis and configured to be inserted into a cochlea of the patient, and an intraneural electrode array communicatively coupled to the auditory prosthesis and configured to be inserted into an auditory nerve of the patient. In this configuration, the auditory prosthesis may stimulate the auditory nerve by applying electrical stimulation by way of the intracochlear electrode array and/or the intraneural electrode array.
Abstract: Exemplary systems and methods for loading a pre-curved electrode array onto a straightening member are described herein. An exemplary system may include a loading tool including a housing and a slider member disposed at least partially within the housing. The slider member may be slidable from a first position to a second position and configured to move a pre-curved electrode array from a curved configuration to a straightened configuration as it slides from the first position to the second position. The exemplary system may also include a straightening member configured to be inserted into the pre-curved electrode array. Corresponding methods are also described.
Abstract: Exemplary systems for loading a pre-curved electrode array onto a stylet include a loading tool and a stylet retainer. The loading tool includes a docking assembly comprising a plurality of wing members that form a receptacle configured to receive a proximal portion of the stylet, a channel assembly comprising a channel configured to receive and allow passage therethrough of the pre-curved electrode array, the channel further configured to receive a distal portion of the stylet, and a connecting member configured to connect the channel assembly to the docking assembly. The stylet retainer is configured to couple to the loading tool to retain the stylet within the loading tool while the pre-curved electrode array is loaded onto the stylet. Corresponding methods are also described.
Type:
Grant
Filed:
June 16, 2009
Date of Patent:
January 27, 2015
Assignee:
Advanced Bionics AG
Inventors:
Chuladatta Thenuwara, William G. Orinski
Abstract: An exemplary electro-acoustic stimulation (EAS) device includes 1) a detection facility configured to detect audio content presented to a patient and included in an acoustic stimulation frequency range, 2) an acoustic stimulation management facility configured to direct a loud-speaker to apply acoustic stimulation representative of the audio content included in the acoustic stimulation frequency range to the patient, and 3) an electrical stimulation management facility configured to direct a cochlear implant implanted within the patient to apply sub-threshold electrical stimulation to the patient by way of one or more electrodes disposed within an apical region of a cochlea of the patient together with the application of the acoustic stimulation. Corresponding systems and methods are also disclosed.
Abstract: An exemplary system includes 1) a headpiece module configured to be affixed to a head of a patient and comprising a primary sound processor configured to generate stimulation parameters used to direct an auditory prosthesis implanted within the patient to apply electrical stimulation representative of one or more audio signals to the patient and 2) a sound processor module separate from the headpiece module and configured to be selectively and communicatively coupled to the headpiece module. The sound processor module includes a secondary sound processor configured to detect a communicative coupling of the sound processor module to the headpiece module and contribute to the generation of one or more of the stimulation parameters while the sound processor module is communicatively coupled to the headpiece module. Corresponding systems and methods are also disclosed.
Abstract: An exemplary system includes at least one computing device communicatively coupled to a cochlear implant system and that 1) determines one or more control parameters to be used by the cochlear implant system to apply electrical stimulation to a patient, 2) determines, based on the one or more control parameters, a target stimulation level to be used by the cochlear implant system to apply the electrical stimulation to the patient, and 3) displays a pre-stimulation visual cue indicative of the determined target stimulation level in a graphical user interface prior to the cochlear implant system using the one or more control parameters to apply the electrical stimulation to the patient. Corresponding systems and methods are also described.
Abstract: Exemplary loading tools configured to facilitate loading of a pre-curved electrode array onto a stylet include a docking assembly, a channel assembly, and a connecting member configured to connect the channel assembly to the docking assembly and maintain a distance therebetween. The docking assembly is configured to couple to the stylet. The channel assembly includes a channel configured to receive and allow passage therethrough of the pre-curved electrode array. The channel is aligned with the docking assembly such that when the stylet is coupled to the docking assembly, the stylet is located at least partially within the channel.
Type:
Grant
Filed:
November 1, 2007
Date of Patent:
December 23, 2014
Assignee:
Advanced Bionics AG
Inventors:
Chuladatta Thenuwara, William G. Orinski, Janusz A. Kuzma, Steve J. Blomquist
Abstract: An exemplary method includes a fitting subsystem detecting a communicative coupling of a cochlear implant associated with a patient to a sound processor connected to the fitting subsystem and automatically determining, in response to the communicative coupling, an implant side associated with the cochlear implant in accordance with one or more implant side selection factors. Corresponding methods and systems are also described.
Type:
Grant
Filed:
August 30, 2010
Date of Patent:
December 23, 2014
Assignee:
Advanced Bionics AG
Inventors:
Fernando Chapa, Guillermo A. Calle, Tracey L. Kruger, Jacob Johnston
Abstract: An exemplary system includes a sound processor configured to identify one or more spectral peaks of an audio signal presented to a cochlear implant patient and an implantable cochlear stimulator communicatively coupled to the sound processor and configured to apply electrical stimulation representative of the one or more spectral peaks to at least one stimulation site within the cochlear implant patient using a partial multipolar stimulation configuration and apply electrical stimulation representative of one or more other spectral components of the audio signal to at least one other stimulation site within the cochlear implant patient using a monopolar stimulation configuration. Corresponding systems methods are also disclosed.
Abstract: An exemplary system includes a sound processor configured to 1) divide an audio signal into a plurality of analysis channels and 2) generate one or more tonality indices each representing a tonality of one of the analysis channels, and an implantable cochlear stimulator communicatively coupled to the sound processor and configured to 1) generate one or more stimulation pulses configured to represent the audio signal in accordance with one or more stimulation parameters, and 2) adjust the one or more stimulation parameters based on at least one of the tonality indices.
Abstract: An exemplary method of minimizing an effect of channel interaction among a plurality of channels in a multi-channel cochlear implant system includes empirically generating an electrical spread matrix that is specific to a patient and representative of a channel interaction among a plurality of channels defined by a plurality of electrodes of electrodes of a multi-channel cochlear implant system associated with the patient, generating a model electrical spread matrix that approximates the empirically generated electrical spread matrix and that has a band inverse matrix, and using the band inverse matrix to determine a set of stimulation current levels to be applied by way of a corresponding set of electrodes included in the plurality of electrodes in order to produce desired stimulation current levels at a plurality of stimulation sites within the cochlea in the presence of the channel interaction. Corresponding methods and systems are also disclosed.
Abstract: An exemplary sound processor apparatus included in an auditory prosthesis system includes a linear regulator and a sound processing integrated circuit (“IC”). The linear regulator 1) receives a source voltage signal having a source voltage level and provided by an external power source, 2) drops the source voltage level to an intermediate voltage level, and 3) outputs an intermediate voltage signal having the intermediate voltage level. The sound processing IC 1) performs one or more sound processing operations with respect to an audio signal presented to a patient associated with the auditory prosthesis system, 2) receives the intermediate voltage signal having the intermediate voltage level, 3) converts the intermediate voltage level into one or more supply voltage levels, and 4) outputs one or more supply voltage signals having the one or more supply voltage levels.
Abstract: Cochlear implant systems include a circuit board having electronic circuitry configured to generate one or more signals configured to direct electrical stimulation of one or more stimulation sites within a patient, an induction coil configured to transmit a telemetry signal by generating a telemetry magnetic field, and a telemetry flux guide positioned between the induction coil and the circuit board. The telemetry flux guide is configured to direct magnetic flux of the telemetry magnetic field away from the circuit board.
Abstract: A microcircuit integrated cochlear electrode array and a process for the manufacture thereof, the electrode array comprising a multiconductor tail portion with longitudinally spaced outwardly exposed electrode receiving pads and a flat multiconductor head portion connected to the tail portion and having spaced outwardly exposed circuit attachment pads, the tail and head portions being laminated between a nonconductive film substrate and an insulating cover and the tail portion being helically wrapped into a helix with the electrode receiving circuit attachment pads exposed and carrying ring electrodes overmolded with a suitable polymeric material.
Abstract: A cochlear implant includes a processor, an array of electrodes disposed along a flexible body and a lead body connecting the processor to the array of electrodes. The lead body includes a first tube having a first outside diameter, a second tube having a second outside diameter smaller than the first diameter, a portion of the second tube being disposed within the first tube, and wires passing through the first tube and the second tube, the wires comprising a helically coiled portion. A method for forming a lead body is also provided.
Type:
Application
Filed:
October 7, 2011
Publication date:
November 20, 2014
Applicant:
Advanced Bionics AG
Inventors:
Chuladatta Thenuwara, Rosa Gallegos, Lidia Vasquez, Mark B. Downing
Abstract: An exemplary system for facilitating binaural hearing by a cochlear implant patient includes 1) a spectral analysis facility configured to divide a first audio signal presented to a first ear of the patient and a second audio signal presented to a second ear of the patient into first and second sets of analysis channels, respectively, and 2) a processing facility configured to process acoustic content contained in a first analysis channel included in the first set of analysis channels and acoustic content contained in a second analysis channel included in the second set of analysis channels, mix the processed acoustic content contained in the first and second analysis channels, and direct a cochlear implant to apply electrical stimulation representative of the mixed acoustic content to the first ear by way of a stimulation channel that corresponds to the first analysis channel.
Type:
Application
Filed:
December 29, 2011
Publication date:
November 6, 2014
Applicant:
ADVANCED BIONICS AG
Inventors:
Lakshmi N. Mishra, Leonid M. Litvak, Abhijit Kulkarni, Lee F. Hartley
Abstract: A method for forming a cochlear electrode array with a plurality of electrodes which are spaced so as to stimulate sites within a cochlea includes shaping a sheet of electrically conductive material to form a support structure and a plurality of electrodes, in which the electrodes are tethered to the support structure at the spacing of the cochlear electrode array. A cochlear lead includes a flexible body that has frictional characteristics that vary about its circumference. A cochlear lead includes a flexible body with a first region and a second region with different surface textures. This generates differential sliding forces during insertion of the cochlear lead which influence a motion of the cochlear lead during insertion. The cochlear lead having an electrode array with varying stiffness along its length is also provided.
Abstract: There is provided an at least partially implantable device for picking up sound impinging onto a skin area of a person, comprising means for generating an audio signal corresponding to the change in time of the distance between a position of the device and the outer surface of the skin area, wherein the device position is adjacent to the skin area.
Abstract: An exemplary stapedius reflex measurement safety system includes a stimulation management facility configured to direct a cochlear implant system to apply an electrical stimulus to an auditory pathway of a patient and a detection facility configured to determine that a change in acoustic immittance that occurs as the electrical stimulus is being applied by the cochlear implant system is likely representative of a rise time phase associated with an occurrence of a stapedius reflex within the patient. The stimulation management facility is further configured to direct, in response to the determination, the cochlear implant system to cease applying the electrical stimulus.
Abstract: A waterproof enclosure for a cochlear implant system or other hearing assistance device includes an outer housing, an inner support in the interior of the outer housing, an acoustic element supported by the inner support, and water-impermeable polymeric protective membrane sealing the interior of the outer housing against water ingress. A hearing device such as a cochlear implant sound processor, a headpiece, an earhook, or a hearing aid comprises an outer housing, an inner support in the interior of the outer housing, a microphone supported by the inner support, and a water-impermeable polymeric protective membrane sealing the interior of the outer housing against water ingress.
Type:
Grant
Filed:
March 17, 2011
Date of Patent:
October 28, 2014
Assignee:
Advanced Bionics AG
Inventors:
Kurt J. Koester, Scott A. Crawford, George Tziviskos