Abstract: In accordance with an aspect of the present systems and methods, there is provided a multi-channel stimulator having a common supply voltage, the stimulator having an electrical circuit with a dual-range compliance voltage supply such that each channel of the multi-channel stimulator is configured to be selectable among two compliance voltages. Channels which can operate at half or less than half compliance voltage can operate in the lower voltage range and thereby achieve energy savings. The stimulator can be switched between a high and low compliance voltage in a bipolar or a monopolar electrode configuration.
Abstract: A composite stylet for facilitating insertion of an implantable electrode array into either a left or right cochlea comprises a composite having a glass transition temperature between room temperature and body temperature. While relatively stiff and straight at room temperature, the composite stylet is slidably inserted into a longitudinal lumen of the electrode array. The electrode array is then inserted into the cochlea. As the composite stylet within the electrode array warms to body temperature, it becomes compliant, allowing the electrode array to assume a spiral shape. The proximal end of the composite stylet, which is not inserted into the body, retains its stiffness to aid the implanter in inserting the electrode array.
Type:
Application
Filed:
May 22, 2009
Publication date:
February 9, 2012
Applicant:
ADVANCED BIONICS, LLC
Inventors:
Kurt J. Koester, Chuladatta Thenuwara, Timothy Beerling
Abstract: An exemplary method of automatic generation of multithread-safe software code includes a multithread-safe code generator subsystem analyzing data representative of non-multithread-safe software code and automatically generating data representative of multithread-safe software code based on the analyzing of the data representative of the non-multithread-safe software code. Corresponding methods and systems are also described.
Abstract: A method includes a fitting subsystem maintaining patient data in a primary database associated with a primary schema, receiving an export file representative of additional patient data extracted from a source database associated with a source schema and maintained by another fitting subsystem, importing the additional patient data represented by the export file into a database partition associated with the source schema, upgrading, in response to the importing, the database partition to be associated with the primary schema, and merging the additional patient data included in the upgraded database partition with the patient data in the primary database. Corresponding methods and systems are also described.
Abstract: An exemplary method of fitting a sound processor to a cochlear implant patient includes pre-loading program data representative of a plurality of sound processing programs onto a sound processor during a data transfer session and selectively using, after completion of the data transfer session, one or more of the pre-loaded sound processing programs to fit the sound processor to the patient. Corresponding methods and systems are also described.
Abstract: An exemplary method of fitting a bilateral cochlear implant patient using a single sound processor includes a fitting subsystem using a first sound processor associated with a first cochlear implant to selectively fit the first cochlear implant and a second cochlear implant to a cochlear implant patient, automatically segregating fitting data generated during the fitting of the first cochlear implant from fitting data generated during the fitting of the second cochlear implant, and transmitting the fitting data generated during the fitting of the second cochlear implant to a second sound processor associated with the second cochlear implant after the fitting of the second cochlear implant to the cochlear implant patient is completed. Corresponding methods and systems are also described.
Abstract: An assistive listening device cap attaches to a headpiece of a cochlear implant behind-the-ear (BTE) unit, an other BTE unit, an earhook, or an external component unit to supplement or replace components thereof. The cap may receive signals from sources outside the BTE unit(s), earhook, and/or external component unit. The cap communicates with the BTE unit(s), earhook, and/or external component unit using direct, wired, or wireless technology.
Abstract: Exemplary cochlear implant systems include an implantable cochlear stimulator configured to be implanted within a patient and generate a stimulation current having an adjustable current level, one or more electrodes communicatively coupled to the stimulator and configured to apply the stimulation current to one or more locations within an ear of the patient, and a probe configured to acquire sound data used to derive an acoustic reflectance of the ear. The implantable cochlear stimulator is configured to adjust the current level of the stimulation current until a change in the acoustic reflectance above a threshold is detected.
Type:
Grant
Filed:
September 24, 2008
Date of Patent:
January 24, 2012
Assignee:
Advanced Bionics, LLC
Inventors:
Andrew P. Quick, Leonid M. Litvak, Aniket Saoji
Abstract: A push-pull amplifier efficiency provides a 4:1 (12 dB) course adjustment of power output by using a single digital control input. The amplifier is provided with an input voltage (VDD) having sixteen steps ranging from 1.25 volts to 3.00 volts. Based on the digital control, an integrated circuit switches between a high power mode and a low power mode. In the low power mode, the output voltage is equivalent to the input voltage. In the high power mode, the amplifier provides an output of twice the input voltage (or four times the power).
Abstract: An electrical feedthrough includes a ceramic body and a ribbon via extending through the ceramic body, an interface between the ribbon via and the ceramic body being sealed using partial transient liquid phase bonding. The ribbon via extends out of the ceramic body and makes an electrical connection with an external device.
Abstract: There is provided an at least partially implantable hearing system comprising a microphone assembly for capturing audio signals from ambient sound; an audio signal processing unit for processing the audio signals captured by the microphone assembly; an implantable main electromechanical output transducer for direct mechanical stimulation of the cochlea according to the audio signals processed by the audio signal processing unit; an implantable box having a central part and an open flange for penetrating through the cochlear wall into the perilymph fluid, wherein the inner cross section of the central part is larger than the inner cross section of the flange; and wherein the electromechanical output transducer is for acting on the perilymph fluid in the central part of the box through a port provided at the box.
Type:
Application
Filed:
March 24, 2009
Publication date:
January 19, 2012
Applicant:
ADVANCED BIONICS AG
Inventors:
Stefan Menzl, Achim Kitschmann, Gerard Loquet
Abstract: An implantable hermetic system includes a hermetic case and a hermetic feedthrough sealed into an aperture in the case. The hermetic feedthrough includes vias which form electrically conductive paths through the hermetic feedthrough. A header that includes integral interconnection contacts is attached to the case. The vias are electrically joined to the interconnection contacts.
Abstract: There is provided a hearing instrument comprising an audio signal processing unit for processing audio signals and means for mechanically applying acoustic waves to the blood in a blood vessel of a user in the audible frequency range according to the processed audio signals in order to stimulate the user's hearing sense.
Abstract: A push-pull amplifier efficiency provides a 4:1 (12 dB) course adjustment of power output by using a single digital control input. The amplifier is provided with an input voltage (VDD) having sixteen steps ranging from 1.25 volts to 3.00 volts. Based on the digital control, an integrated circuit switches between a high power mode and a low power mode. In the low power mode, the output voltage is equivalent to the input voltage. In the high power mode, the amplifier provides an output of twice the input voltage (or four times the power).
Abstract: A cochlear implant system includes a cochlear electrode array which has a flexible body with a distal end, a plurality of electrodes supported along a length of the flexible body, and a lumen formed in the flexible body. The cochlear implant system also includes a stiffening stylet which is fully inserted into the lumen prior to insertion of the electrode array into the cochlea. The stiffening stylet is configured such the stylet does not extend to the distal end of the flexible body and remains stationary within the lumen to prevent buckling of the electrode array during insertion of the electrode array through a cochleostomy and into the cochlea. The stiffening stylet is configured to be withdrawn from the lumen after the electrode array is positioned within the cochlea. A method for implanting an electrode array into a cochlea is also provided.
Abstract: Exemplary insertion tools, systems, and methods for inserting a pre-curved electrode array portion of a lead into a bodily orifice are described herein. An exemplary insertion tool includes a handle assembly, a slider assembly, an insertion assembly coupled to the handle assembly, and a retractor assembly disposed at least partially within the handle assembly and configured to selectively couple to a straightening member inserted into the pre-curved electrode array portion and at least partially retract the straightening member from the pre-curved electrode array portion in response to actuation by a user of the slider assembly. The retractor assembly may comprise a spring-loaded retractor member configured to move from a distal position to a proximal position in response to actuation by the user of the slider assembly to at least partially retract the straightening member from the pre-curved electrode array portion. Corresponding insertion tools, systems, and methods are also described.
Abstract: Exemplary insertion tools, systems, and methods for inserting an electrode array portion of a lead into a bodily orifice are described herein. An exemplary insertion tool includes a handle assembly, a slider assembly, a retractor assembly disposed at least partially within the handle assembly, and a rocker lever. The retractor assembly may include a stiffening member configured to be inserted into the electrode array portion and a spring-loaded retractor member coupled at a proximal end of the stiffening member. The spring-loaded retractor member may be configured to move from a distal position to a proximal position to at least partially retract the stiffening member from the electrode array portion. The rocker lever may be configured to selectively retain the spring-loaded retractor member in the distal position. Corresponding tools, systems, and methods are also described.
Abstract: Exemplary insertion tools, systems, and methods for inserting an electrode array portion of a lead into a bodily orifice are described herein. An exemplary insertion tool includes a handle assembly, a retractor assembly disposed at least partially within the handle assembly, and a slider assembly disposed at least partially within the handle assembly. The retractor assembly may include a stiffening member configured to be inserted into an electrode array portion and a spring-loaded retractor member coupled to the stiffening member and configured to move from a distal position to a proximal position to at least partially retract the stiffening member from the electrode array portion. The slider assembly may be configured to selectively retain the spring-loaded retractor member and further configured to release the spring-loaded retractor member to move from the distal position to the proximal position in response to actuation by a user of the slider assembly.
Abstract: Optimizing pitch allocation in a cochlear stimulation system may include implanting an electrode array having a plurality of electrodes into the cochlea of a patient, where the electrode array has an associated implant fitting characteristic that defines a relationship between the implanted electrode array and audio frequencies, presenting sounds through the electrode array to the patient, receiving from the patient a selection of one of the sounds that most closely conforms to a single note, and determining a slope of the implant fitting characteristic of the electrode array based on the sound selected by the patient. Each sound may include a fundamental frequency and one or more harmonics. The optimization may also include changing a center frequency of a band pass filter associated with each electrode based on the determined slope.
Abstract: A voice coil suspension system comprising a spider formed of flexible dielectric material defining a flexure portion configured to suspend a voice coil for axial displacement and an elongate connector portion for carrying flat electrical conductors for electrically connecting terminals of said voice coil to stationary electric contacts.
Type:
Grant
Filed:
August 29, 2006
Date of Patent:
December 13, 2011
Assignee:
Advanced Bionics AG
Inventors:
Richard L. Weisman, Claude A. Vidal, Russ J. Redmond, Michael Collinson, Paul Kaluzniak