Abstract: A bionic ear cochlear stimulation system has the capability to stimulate fast enough to induce stochastic neural firing, thereby acting to restore “spontaneous” neural activity. Such neurostimulation involves the use of a high rate pulsitile stimulation signal that is amplitude modulated with sound information. Advantageously, by using such neurostimulation, a fitting system may be utilized that does not normally require T-level threshold measurements. T-level threshold measurements are not required in most instances because the high-rate pulsitile stimulation, even though at levels that would normally be a sub-threshold electrical stimulus, is able to modulate neural firing patterns in a perceptible way.
Abstract: Apparatus and methods for converting one type of speech processor unit into another type of speech processor unit. A behind the ear (BTE) speech processor is converted to a body-worn device by means of a container that encloses the BTE and allows for device operations and charging. The body-worn device is worn in one embodiment on a belt of a patient.
Type:
Grant
Filed:
May 4, 2005
Date of Patent:
December 8, 2009
Assignee:
Advanced Bionics, LLC
Inventors:
Thomas Patrick Walsh, Carla Mann Woods, Richard C. Ross, Rankiri Tissa Karunasiri, Anthony K. Arnold
Abstract: A system for delivering therapeutic agents to biological tissue includes a surgically implantable lead configured to be inserted into the biological tissue, the surgically implantable lead including a preformed cavity; and a modular capsule containing a therapeutic agent which includes dexamethasone base; the modular capsule being secured within the preformed cavity; the modular capsule releasing the therapeutic agent into the biological tissue. A method of delivering therapeutic agents to biological tissue includes obtaining a surgically implantable lead with a preformed cavity; obtaining a modular capsule containing a therapeutic agent comprising dexamethasone base and securing it within the preformed cavity; and inserting the surgically implantable lead into the biological tissue.
Type:
Application
Filed:
July 31, 2009
Publication date:
November 26, 2009
Applicant:
ADVANCED BIONICS, LLC
Inventors:
Edward H. Overstreet, Jian Xie, Michael S. Colvin, Michael A. Faltys
Abstract: A detection circuit for sensing signals in an implantable cochlear stimulator is provided. The detection circuit has a primary coil winding which is part of the detected circuit. The primary coil is placed adjacent to and coupled electromagnetically to a secondary coil winding which is connected to an isolated circuit. The isolated circuit has circuit means for processing the induced current in the isolated current. Because a transformer is employed, the detection circuit draws only minimal power from the detected circuit, and the sensed output voltage can be flexibly scaled.
Abstract: Systems and techniques for processing signals representative of sound for conveyance to the auditory system of a subject based on the identity of an input device. In one implementation, a method includes identifying an input element to an audiological system that conveys sound information directly to a subject's auditory system, automatically setting parameters for processing the signal based on the identity of the input element, and processing the signal in accordance with the processing parameters. The input element is configured to generate a signal representative of sound.
Type:
Application
Filed:
June 25, 2009
Publication date:
November 12, 2009
Applicant:
Advanced Bionics, LLC
Inventors:
Philip A. SEGEL, Tissa KARUNASIRI, Lakshmi N. MISHRA
Abstract: A multichannel cochlear implant system spatially spreads the excitation pattern in the target neural tissue by either: (1) rapid sequential stimulation of a small group of electrodes, or (2) simultaneously stimulating a small group of electrodes. Such multi-electrode stimulation stimulates a greater number of neurons in a synchronous manner, thereby increasing the amplitude of the extra-cellular voltage fluctuation and facilitating its recording. The electrical stimuli are applied simultaneously (or sequentially at a rapid rate) on selected small groups of electrodes while monitoring the evoked compound action potential (ECAP) on a nearby electrode. The presence of an observable ECAP not only validates operation of the implant device at a time when the patient may be unconscious or otherwise unable to provide subjective feedback, but also provides a way for the magnitude of the observed ECAP to be recorded as a function of the amplitude of the applied stimulus.
Type:
Grant
Filed:
April 6, 2007
Date of Patent:
November 10, 2009
Assignee:
Advanced Bionics, LLC
Inventors:
Edward H Overstreet, Leonid M Litvak, Michael A Faltys
Abstract: Methods and systems of optimizing sound sensation of a cochlear implant patient include dividing an audio signal into a plurality of analysis channels, generating one or more tonality indices each representing a tonality of one of the analysis channels, generating one or more stimulation pulses configured to represent the audio signal in accordance with one or more stimulation parameters, and adjusting at least one of the stimulation parameters based on at least one of the tonality indices.
Abstract: Methods of selecting a number of channels out of a multiplicity of channels of an implantable neural stimulation system for stimulation during a stimulation frame include obtaining a threshold corresponding to the stimulation frame, using the threshold to determine an adjusted amplitude corresponding to one or more channels within the multiplicity of channels, using the adjusted amplitudes to determine a probability for each of the one or more channels within the multiplicity of channels, providing a random number for each of the one or more channels within the multiplicity of channels, and selecting a number of channels within the one or more channels for stimulation during the stimulation frame. Each of the selected number of channels has a probability that is greater than the random number.
Abstract: Stimulation channel selection methods for an implantable neural stimulation system having a multiplicity of channels include computing a probability for each channel within the multiplicity of channels and selecting at least one of the channels for stimulation during a frame. The selecting of the at least one of the channels for stimulation during the frame includes selecting a channel, obtaining a random number, comparing the random number to the probability of the channel, and selecting the channel for stimulation if the probability of the channel is greater than the random number.
Abstract: Systems and techniques for processing signals representative of sound for conveyance to the auditory system of a subject based on the identity of an input device. In one implementation, a method includes identifying an input element to an audiological system that conveys sound information directly to a subject's auditory system, automatically setting parameters for processing the signal based on the identity of the input element, and processing the signal in accordance with the processing parameters. The input element is configured to generate a signal representative of sound.
Type:
Grant
Filed:
December 9, 2004
Date of Patent:
October 6, 2009
Assignee:
Advanced Bionics, LLC
Inventors:
Philip A. Segel, Tissa Karunasiri, Lakshmi N. Mishra
Abstract: Methods of selecting a number of channels out of a multiplicity of channels of an implantable neural stimulation system for stimulation during a stimulation frame include obtaining a threshold corresponding to the stimulation frame, determining an amplitude corresponding to each channel within the multiplicity of channels, comparing the amplitude corresponding to each of the channels within the multiplicity of channels to the threshold, and selecting each of the channels having amplitudes that exceed the threshold for stimulation during the stimulation frame.
Abstract: An assistive listening device cap attaches to a headpiece of a cochlear implant behind-the-ear (BTE) unit, an other BTE unit, an earhook, or an external component unit to supplement or replace components thereof. The cap may receive signals from sources outside the BTE unit(s), earhook, and/or external component unit. The cap communicates with the BTE unit(s), earhook, and/or external component unit using direct, wired, or wireless technology.
Abstract: Disclosed is a cochlear stimulation system having patient parameters that reside in memory of an internal portion of the system. Different external systems define how the cochlear stimulation system processes a received acoustic signal and uses patient information uploaded from an implant to parameterize system processing. The external system uses external and internal processing capability to convert acoustic signals to electrical stimulus most appropriate for the patient. Because the patient parameters reside internally, the external portion of the system can be replaced to provide an external replacement processor and potentially offer the patient an new type of program without having to re-program the cochlear stimulation system.
Type:
Application
Filed:
May 8, 2009
Publication date:
September 3, 2009
Applicant:
Advanced Bionics, LLC
Inventors:
Michael A. Faltys, Timothy J. Starkweather, Anthony K. Arnold
Abstract: A bionic ear cochlear stimulation system has the capability to stimulate fast enough to induce stochastic neural firing, thereby acting to restore “spontaneous” neural activity. Such neurostimulation involves the use of a high rate pulsitile stimulation signal that is amplitude modulated with sound information. Advantageously, by using such neurostimulation, a fitting system may be utilized that does not normally require T-level threshold measurements. T-level threshold measurements are not required in most instances because the high-rate pulsitile stimulation, even though at levels that would normally be a sub-threshold electrical stimulus, is able to modulate neural firing patterns in a perceptible way.
Abstract: An adaptive place-pitch ranking procedure for use with a cochlear implant or other neural stimulation system provides a systematic method for quantifying the magnitude and direction of errors along the place-pitch continuum. The method may be conducted and completed in a relatively short period of time. In use, the implant user or listener is asked to rank the percepts obtained after a sequential presentation of monopolar stimulation pulses are applied to a selected spatially-defined electrode pair. The spatially-defined electrode pair may be a physical electrode pair or a virtual electrode pair. A virtual electrode pair includes at least one virtual electrode contact. Should the patient's judgment of pitch order be correct for all applied interrogations, then no further testing involving the tested electrode pair (two electrode contacts) is undertaken.
Type:
Grant
Filed:
September 1, 2006
Date of Patent:
August 4, 2009
Assignee:
Advanced Bionics, LLC
Inventors:
Philip A Segel, Tracey L. Kruger, Leonid M Litvak
Abstract: The stimulation provided in the electrically stimulated cochlea is modulated in accordance with the amplitude of a received acoustic signal and the onset of a sound in a received acoustic signal to provide increased sound perception. An onset time that corresponds to the onset of a sound is detected in an acoustic signal associated with a frequency band. A forcing voltage and a transmitting factor are determined, wherein the forcing voltage and the transmitting factor are associated with the frequency band at the detected onset time. The acoustic signal is modulated as a function of the forcing voltage and the transmitting factor to generate an output signal. The generated output signal can be used to stimulate the cochlea. The modulation strategy can be used in conjunction with sound processing strategies that employ frequency modulation, amplitude modulation, or a combination of frequency and amplitude modulation.
Abstract: Methods and systems for modifying the parameters of at least one hearing device for a patient with residual hearing provide needed orchestration of acoustic and electric stimulation of patients wearing such devices.
Type:
Grant
Filed:
March 31, 2005
Date of Patent:
July 14, 2009
Assignee:
Advanced Bionics, LLC
Inventors:
Michael A. Faltys, Philip A. Segel, Edward H. Overstreet, William Vanbrooks Harrison
Abstract: A method and system of providing therapy to a patient implanted with an array of electrodes is provided. The electrodes are configured for respectively providing electrical stimulation to tissue of the patient. The method comprises measuring physiological parameter information indicative of the coupling efficiencies between the respective electrodes of the array and the tissue, computing numerical values from the measured physiological parameter information, generating a chart representative of the computed numerical values, and displaying the chart to a user.
Abstract: A system for performing a neurostimulation trial comprises an external trial stimulator capable of delivering stimulation energy to a plurality of electrodes carried by one or more stimulation leads. The external trial stimulator is configurable to operate in a plurality of stimulation energy delivery modes to respectively emulate one of different neurostimulator types. The system may further comprise a programmer capable of configuring the external trial stimulator to operate in one of the stimulation energy delivery modes. The programmer may be capable of generating a first programming screen capable of allowing a first set of stimulation parameters to be defined for the first neurostimulator type, and a second programming screen capable of allowing a second set of stimulation parameters to be defined for a second neurostimulator type.
Type:
Application
Filed:
December 6, 2007
Publication date:
June 11, 2009
Applicant:
ADVANCED BIONICS CORPORATION
Inventors:
Todd Whitehurst, Rafael Carbunaru, Kristen Jaax, Andrew DiGiore, Brett D. Schleicher
Abstract: An envelope based amplitude mapping achieves the signal compression required to provide a natural sound level without the high processor loading or waveform alteration. In one embodiment, the output of a family of parallel bandpass filters is processed by an envelope detector, followed by decimation. The resulting reduced data rate envelope is log mapped to produce a scaling factor for the original high data rate bandpass filter output sequence. The resulting scaled signal determines the current level for stimulation of the cochlea for each frequency band, which stimulation achieves a log mapping of the sound amplitude effect similar to natural hearing, while reducing processor load, and preserving waveform shape.