Abstract: An improved method of producing differentiated progenitor cells comprising obtaining inner cell mass cells from a blastocyst and inducing differentiation of the inner cell mass cells to produce differentiated progenitor cells. The differentiated progenitor cells may be transfected such that there is an addition, deletion or alteration of a desired gene. The differentiated progenitor cells are useful in cell therapy and as a I source of cells for the production of tissues and organs for transplantation. Also provided is a method of producing a lineage-defective human embryonic stem cell.
Type:
Grant
Filed:
May 16, 2008
Date of Patent:
June 17, 2014
Assignee:
Advanced Cell Technology
Inventors:
Jose Cibelli, Michael D. West, Robert Lanza
Abstract: This present invention provides novel methods for deriving embryonic stem cells and embryo-derived cells from an embryo without requiring destruction of the embryo. The invention further provides cells and cell lines derived without embryo destruction, and the use of the cells for therapeutic and research purposes. It also relates to novel methods of establishing and storing an autologous stem cell line prior to implantation of an embryo, e.g., in conjunction with reproductive therapies such as IVF.
Type:
Grant
Filed:
January 11, 2011
Date of Patent:
June 3, 2014
Assignee:
Advanced Cell Technology, Inc.
Inventors:
Young Gie Chung, Robert Lanza, Irina V. Klimanskaya
Abstract: The present invention provides methods for the culture of animal pluripotent stem cells and their differentiated progeny cells, tissues, and organs, and nonhuman animal embryos and fetuses.
Type:
Application
Filed:
October 29, 2013
Publication date:
February 27, 2014
Applicant:
ADVANCED CELL TECHNOLOGY, INC.
Inventors:
Michael D. West, Karen B. Chapman, Irina V. Klimanskaya
Abstract: This present invention provides novel methods for deriving embryonic stem cells, those cells and cell lines, and the use of the cells for therapeutic and research purposes without the destruction of the embryo. It also relates to novel methods of establishing and storing an autologous stem cell line prior to implantation of an embryo, e.g., in conjunction with reproductive therapies such as IVF.
Abstract: The present invention provides methods for the culture of animal pluripotent stem cells and their differentiated progeny cells, tissues, and organs, and nonhuman animal embryos and fetuses.
Type:
Grant
Filed:
June 29, 2011
Date of Patent:
December 3, 2013
Assignee:
Advanced Cell Technology, Inc.
Inventors:
Michael D. West, Karen B. Chapman, Irina V. Klimanskaya
Abstract: This invention relates to methods for improved cell-based therapies for retinal degeneration and for differentiating human embryonic stem cells and human embryo-derived into retinal pigment epithelium (RPE) cells and other retinal progenitor cells.
Abstract: This invention relates to methods for improved cell-based therapies for retinal degeneration and for differentiating human embryonic stem cells and human embryo-derived into retinal pigment epithelium (RPE) cells and other retinal progenitor cells.
Abstract: This invention relates to methods for improved cell-based therapies for retinal degeneration and for differentiating human embryonic stem cells and human embryo-derived into retinal pigment epithelium (RPE) cells and other retinal progenitor cells.
Abstract: Methods are provided for detection of a target cell type within a cell population, and compositions are provided comprising cells and an indicator that indicates the number of cells of the target cell type in the cell population. Examples are provided in which these methods are used to detect human embryonic stem cells within a differentiated cell population with exquisite sensitivity. Differentiated cells produced from embryonic stem cells can be characterized by these methods before transplantation into a recipient, thereby providing further assurance of safety.
Abstract: This disclosure provides the first description of hESC-derived cells transplanted into human patients. Results are reported for one patient with each of Stargardt's Macular Dystrophy (SMD) and Dry Age-Related Macular Degeneration (AMD). Controlled hESC differentiation resulted in near-100% pure RPE populations. Immediately after surgery, hyperpigmentation was visible at the transplant site in both patients, with subsequent evidence the cells had attached and integrated into the native RPE layer. No signs of inflammation or hyperproliferation were observed. The hESC-derived RPE cells have shown no signs of rejection or tumorigenicity at the time of this report. Visual measurements suggest improvement in both patients.
Abstract: The present invention generally relates to novel preparations of mesenchymal stromal cells (MSCs) derived from hemangioblasts, methods for obtaining such MSCs, and method sof treating a pathology using such MSCs. The methods of the present invention produce substantial numbers of MSCs having a potency-retaining youthful phenotype, which are useful in the treatment of pathologies.
Abstract: Activated human embryos produced by therapeutic cloning can give rise to human totipotent and pluripotent stem cells from which autologous cells for transplantation therapy are derived. The present invention provides methods for producing activated human embryos that can be used to generate totipotent and pluripotent stem cells from which autologous cells and tissues suitable for transplantation can be derived. The ability to create autologous human embryos represents a critical step towards generating immune-compatible stem cells that can be used to overcome the problem of immune rejection in regenerative medicine. The activated human embryos produced by the present invention also provide model systems for identifying and analyzing the molecular mechanisms of epigenetic imprinting and the genetic regulation of embryogenesis and development.
Type:
Application
Filed:
October 16, 2012
Publication date:
April 25, 2013
Applicant:
ADVANCED CELL TECHNOLOGY, INC.
Inventors:
Jose Cibelli, Michael West, Keith Campbell
Abstract: Methods for laser microdissection isolation of viable cells are provided. Cells of a desired type may be isolated from a diverse population, optionally with detection and exclusion of undesired cells. Desired cells may be isolated from a population that arose from differentiation of pluripotent cells, preferably embryonic stem cells or induced pluripotent stem cells, and undifferentiated stem cells may be detected and excluded from selection including the isolation of RPE cells sleeted based on morphology (e.g., characteristic mottled appearance) from a population of ES cells. The cells isolated by these methods, including RPE cells, may be essentially free of undifferentiated cells and thus suitable for use in cell-based therapies.
Abstract: Methods for obtaining pluripotent (embryonic stem) cells from parthenogenetic embryos, especially primates, are provided. These cells are useful for producing differentiated cells, tissues and organs, especially human and non-human primate cells, tissues and organs.
Type:
Grant
Filed:
May 27, 2011
Date of Patent:
September 25, 2012
Assignee:
Advanced Cell Technology, Inc.
Inventors:
James M. Robl, Jose Cibelli, Amy Burnside
Abstract: This invention relates to methods for improved cell-based therapies for retinal degeneration and for differentiating human embryonic stem cells and human embryo-derived into retinal pigment epithelium (RPE) cells and other retinal progenitor cells.
Abstract: Methods of generating and expanding human hemangio-colony forming cells in vitro and methods of expanding and using such cells are disclosed. The methods permit the production of large numbers of hemangio-colony forming cells as well as derivative cells, such as hematopoietic and endothelial cells. The cells obtained by the methods disclosed may be used for a variety of research, clinical, and therapeutic applications.
Abstract: Methods for obtaining pluripotent (embryonic stem) cells from parthenogenetic embryos, especially primates, are provided. These cells are useful for producing differentiated cells, tissues and organs, especially human and non-human primate cells, tissues and organs.
Type:
Application
Filed:
May 27, 2011
Publication date:
December 1, 2011
Applicant:
Advanced Cell Technology, Inc.
Inventors:
James M. ROBL, Jose Cibelli, Amy Burnside
Abstract: Methods of generating and expanding human hemangio-colony forming cells in vitro and methods of expanding and using such cells are disclosed. The methods permit the production of large numbers of hemangio-colony forming cells as well as derivative cells, such as hematopoietic and endothelial cells. The cells obtained by the methods disclosed may be used for a variety of research, clinical, and therapeutic applications.
Abstract: Methods for obtaining pluripotent (embryonic stem) cells from parthenogenetic embryos, especially primates, are provided. These cells are useful for producing differentiated cells, tissues and organs, especially human and non-human primate cells, tissues and organs.
Type:
Grant
Filed:
February 27, 2003
Date of Patent:
May 31, 2011
Assignee:
Advanced Cell Technology, Inc.
Inventors:
James M. Robl, Jose Cibelli, Amy Burnside
Abstract: This invention relates to methods for improved cell-based therapies for retinal degeneration and for differentiating human embryonic stem cells and human embryo-derived into retinal pigment epithelium (RPE) cells and other retinal progenitor cells.