Abstract: The present invention concerns a method for obtaining an implantable cartilage gel for tissue repair of hyaline cartilage, comprising particles of chitosan hydrogel and cells that are capable of forming hyaline cartilage, said method comprising a step for amplification of primary cells in a three-dimensional structure comprising particles of physical hydrogel of chitosan or a chitosan derivative, then a step for re-differentiation and induction of the synthesis of extracellular matrix by said amplified cells, in the same three-dimensional structure, wherein said cells are primary articular chondrocytes and/or mesenchymal stem cells differentiated into chondrocytes. The present invention also concerns the cartilage gel obtained thereby, and its various uses for cartilage repair following a traumatic lesion or an osteoarticular disease such as osteoarthritis.
Abstract: The present invention concerns a method for obtaining an implantable cartilage gel for tissue repair of hyaline cartilage, comprising particles of chitosan hydrogel and cells that are capable of forming hyaline cartilage, said method comprising a step for amplification of primary cells in a three-dimensional structure comprising particles of physical hydrogel of chitosan or a chitosan derivative, then a step for re-differentiation and induction of the synthesis of extracellular matrix by said amplified cells, in the same three-dimensional structure, wherein said cells are primary articular chondrocytes and/or mesenchymal stem cells differentiated into chondrocytes. The present invention also concerns the cartilage gel obtained thereby, and its various uses for cartilage repair following a traumatic lesion or an osteoarticular disease such as osteoarthritis.
Type:
Application
Filed:
March 25, 2020
Publication date:
August 6, 2020
Applicants:
ADVANCED CHITOSAN SOLUTIONS BIOTECH, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE CLAUDE BERNARD LYON 1
Abstract: The present invention concerns a method for obtaining an implantable cartilage gel for tissue repair of hyaline cartilage, comprising particles of chitosan hydrogel and cells that are capable of forming hyaline cartilage, said method comprising a step for amplification of primary cells in a three-dimensional structure comprising particles of physical hydrogel of chitosan or a chitosan derivative, then a step for re-differentiation and induction of the synthesis of extracellular matrix by said amplified cells, in the same three-dimensional structure, wherein said cells are primary articular chondrocytes and/or mesenchymal stem cells differentiated into chondrocytes. The present invention also concerns the cartilage gel obtained thereby, and its various uses for cartilage repair following a traumatic lesion or an osteoarticular disease such as osteoarthritis.
Type:
Grant
Filed:
December 1, 2015
Date of Patent:
April 7, 2020
Assignees:
ADVANCED CHITOSAN SOLUTIONS BIOTECH, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE CLAUDE BERNARD LYON 1
Abstract: The present invention concerns a method for obtaining an implantable cartilage gel for tissue repair of hyaline cartilage, comprising particles of chitosan hydrogel and cells that are capable of forming hyaline cartilage, said method comprising a step for amplification of primary cells in a three-dimensional structure comprising particles of physical hydrogel of chitosan or a chitosan derivative, then a step for re-differentiation and induction of the synthesis of extracellular matrix by said amplified cells, in the same three-dimensional structure, wherein said cells are primary articular chondrocytes and/or mesenchymal stem cells differentiated into chondrocytes. The present invention also concerns the cartilage gel obtained thereby, and its various uses for cartilage repair following a traumatic lesion or an osteoarticular disease such as osteoarthritis.
Type:
Application
Filed:
December 1, 2015
Publication date:
October 26, 2017
Applicants:
ADVANCED CHITOSAN SOLUTIONS BIOTECH, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE CLAUDE BERNARD LYON 1