Patents Assigned to Advanced Diamond Technologies, Inc.
-
Patent number: 10907264Abstract: A durable composite diamond electrode is disclosed which comprise at least a relatively thicker conductive UNCD (Ultrananocrystalline Diamond) layer, with low deposition cost, on a substrate underlying a relatively thinner conductive MCD (Microcrystalline Diamond) layer. The electrode exhibits long life and superior delamination resistance under extremely stressed electrochemical oxidation conditions. It is hypothesized that this improvement in electrode reliability is due to a combination of stress relief by the composite film with the slightly “softer” underlying UNCD “root” layer and the electrochemically durable overlying MCD “shield” layer, an effective disruption mechanism of the fracture propagation between the compositing layers, and thermal expansion coefficient match between the diamond layers and the substrate.Type: GrantFiled: June 10, 2016Date of Patent: February 2, 2021Assignee: Advanced Diamond Technologies, Inc.Inventors: Hongjun Zeng, John Arthur Carlisle, Ian Wakefield Wylie
-
Patent number: 10858744Abstract: An electrolytic ozone generator includes an anode with a longitudinal edge, a cathode with a longitudinal edge spaced apart from the cathode, and an isolator. The isolator electrically separates the cathode from the anode and is semi-impermeable. The anode and cathode are impermeable for generating ozone in a flow area fluidly coupling longitudinal edges of the anode and the cathode. Ozone water apparatus, methods of making electrolytic ozone generators, and methods of generating ozone using electrolytic ozone generators are also described.Type: GrantFiled: October 20, 2017Date of Patent: December 8, 2020Assignee: Advanced Diamond Technologies, Inc.Inventors: Hongjun Zeng, Donato M. Ceres, John Wagner
-
Patent number: 10259727Abstract: An electrochemical system and method are disclosed for On Site Generation (OSG) of oxidants, such as free available chlorine, mixed oxidants and persulfate. Operation at high current density, using at least a diamond anode, provides for higher current efficiency, extended lifetime operation, and improved cost efficiency. High current density operation, in either a single pass or recycle mode, provides for rapid generation of oxidants, with high current efficiency, which potentially allows for more compact systems. Beneficially, operation in reverse polarity for a short cleaning cycle manages scaling, provides for improved efficiency and electrode lifetime and allows for use of impure feedstocks without requiring water softeners. Systems have application for generation of chlorine or other oxidants, including mixed oxidants providing high disinfection rate per unit of oxidant, e.g. for water treatment to remove microorganisms or for degradation of organics in industrial waste water.Type: GrantFiled: August 10, 2018Date of Patent: April 16, 2019Assignee: Advanced Diamond Technologies, Inc.Inventors: Ian Wakefield Wylie, Prabhu U. Arumugam, Hongjun Zeng, John Arthur Carlisle
-
Patent number: 10239772Abstract: The present invention relates to an apparatus for the production of ozone from water comprising at least one cell, consisting of an anode, a cathode and an interposed cation-conducting membrane, wherein the membrane conductively connects the anode and the cathode while forming flow channels for water that are separated from one another as anode and cathode chambers and wherein the flow channels are configured to allow for the recirculation of the water flow within the chambers. The present invention further relates to an electrochemical method and apparatus for producing ozone or dissolved ozone in water in high concentrations by mean of recirculation of water between at least one chamber and at least one water tank.Type: GrantFiled: May 27, 2016Date of Patent: March 26, 2019Assignee: Advanced Diamond Technologies, Inc.Inventors: Donato M. Ceres, John Arthur Carlisle, Prabhu Arumugam, Matthew Hart
-
Publication number: 20180346352Abstract: An electrochemical system and method are disclosed for On Site Generation (OSG) of oxidants, such as free available chlorine, mixed oxidants and persulfate. Operation at high current density, using at least a diamond anode, provides for higher current efficiency, extended lifetime operation, and improved cost efficiency. High current density operation, in either a single pass or recycle mode, provides for rapid generation of oxidants, with high current efficiency, which potentially allows for more compact systems. Beneficially, operation in reverse polarity for a short cleaning cycle manages scaling, provides for improved efficiency and electrode lifetime and allows for use of impure feedstocks without requiring water softeners. Systems have application for generation of chlorine or other oxidants, including mixed oxidants providing high disinfection rate per unit of oxidant, e.g. for water treatment to remove microorganisms or for degradation of organics in industrial waste water.Type: ApplicationFiled: August 10, 2018Publication date: December 6, 2018Applicant: Advanced Diamond Technologies, Inc.Inventors: Ian Wakefield Wylie, Prabhu U. Arumugam, Hongjun Zeng, John Arthur Carlisle
-
Patent number: 10046989Abstract: An electrochemical system and method are disclosed for On Site Generation (OSG) of oxidants, such as free available chlorine, mixed oxidants and persulfate. Operation at high current density, using at least a diamond anode, provides for higher current efficiency, extended lifetime operation, and improved cost efficiency. High current density operation, in either a single pass or recycle mode, provides for rapid generation of oxidants, with high current efficiency, which potentially allows for more compact systems. Beneficially, operation in reverse polarity for a short cleaning cycle manages scaling, provides for improved efficiency and electrode lifetime and allows for use of impure feedstocks without requiring water softeners. Systems have application for generation of chlorine or other oxidants, including mixed oxidants providing high disinfection rate per unit of oxidant, e.g. for water treatment to remove microorganisms or for degradation of organics in industrial waste water.Type: GrantFiled: April 23, 2015Date of Patent: August 14, 2018Assignee: Advanced Diamond Technologies, Inc.Inventors: Ian Wakefield Wylie, Prabhu U. Arumugam, Hongjun Zeng, John Arthur Carlisle
-
Publication number: 20180112317Abstract: An electrolytic ozone generator includes an anode with a longitudinal edge, a cathode with a longitudinal edge spaced apart from the cathode, and an isolator. The isolator electrically separates the cathode from the anode and is semi-impermeable. The anode and cathode are impermeable for generating ozone in a flow area fluidly coupling longitudinal edges of the anode and the cathode. Ozone water apparatus, methods of making electrolytic ozone generators, and methods of generating ozone using electrolytic ozone generators are also described.Type: ApplicationFiled: October 20, 2017Publication date: April 26, 2018Applicant: Advanced Diamond Technologies, Inc.Inventors: Hongjun Zeng, Donato M. Ceres, John Wagner
-
Publication number: 20160369318Abstract: The invention describes a method of ozone titration sensing which utilizes an ozone addition to a target solution, detection of ozone using an Oxidation-Reduction Potential (ORP) electrode or an Ultraviolet (UV) absorption photodiode or other means to detect ozone and the determination of the relative concentration of organics or pathogens subject to ozone oxidation which are present in the target solution. The inventive sensing method can be usefully employed to determine the relative concentration of pathogens such as viruses, bacteria and/or parasites that are readily oxidizable by ozone in aqueous solutions. The inventive sensing method may be used to control an ozone (or other oxidizing or disinfecting) compound dispensing system to optimize the dosage of ozone (or other disinfecting compound) necessary to produce a desired kill ratio or to generate a desired residual of ozone concentration in an aqueous solution after pathogen disinfection.Type: ApplicationFiled: June 22, 2016Publication date: December 22, 2016Applicant: Advanced Diamond Technologies, Inc.Inventors: John Arthur Carlisle, Donato M. Ceres, John Wagner, John d. Yerger, III
-
Publication number: 20160362803Abstract: A novel durable composite diamond electrode comprising at least a relatively thicker conductive layer of UNCD (Ultrananocrystalline Diamond) layer with a Young's modulus of less than 900 GPa on a niobium substrate underlying a relatively thinner conductive MCD (Microcrystalline Diamond) layer with a Young's modulus of greater than 900 GPa, has been shown to exhibit superior delamination resistance under extreme shear stress during electrochemical oxidation reliability testing. Highly accelerated lifetime testing of these durable composite diamond electrodes at a constant current density of 2.5 amps/cm2 (25000 amps/m2) in a 1 M NaCl (58 g/L) solution, have demonstrated lifetimes before delamination failure of greater than 2000 hours (i.e. >5000 Ahr/cm2). Using a conservative estimate of lifetime to failure with a cubed dependence on current density, the lifetime at a more typical operating current density of 0.25 amps/cm2 (2500 amps/m2) would be at least 2,000,000 hours (228 years) and >3.5 years at 1.Type: ApplicationFiled: June 10, 2016Publication date: December 15, 2016Applicant: Advanced Diamond Technologies, Inc.Inventors: Hongjun Zeng, John Arthur Carlisle, Ian Wakefield Wylie
-
Publication number: 20160348236Abstract: A novel composite diamond film comprising of a relatively thick layer of UNCD (Ultrananocrystalline Diamond) with a Young's modulus of less than 900 GPa and an underlying relatively thin MCD (microcrystalline diamond) layer with a Young's modulus of greater than 900 GPa, has been shown to exhibit superior delamination resistance under extreme shear stress. It is hypothesized that this improvement is due to a combination of stress relief by the composite film with a slightly “softer” UNCD layer, a disruption of the fracture mechanism through the composite layer(s), and the near ideal chemical and thermal expansion coefficient match between the two diamond layers. The combination of a thick but “softer” underlying UNCD layer with a thin but harder overlying MCD layer provides an excellent compromise between the low deposition cost and smoothness of UNCD with the extreme hardness and unparalleled chemical, electrochemical and immunological inertness of even a thin layer of MCD.Type: ApplicationFiled: May 27, 2016Publication date: December 1, 2016Applicant: Advanced Diamond Technologies, Inc.Inventors: Hongjun Zeng, John Arthur Carlisle, Ian Wakefield Wylie
-
Publication number: 20160347629Abstract: The present invention relates to an apparatus for the production of ozone from water comprising at least one cell, consisting of an anode, a cathode and an interposed cation-conducting membrane, wherein the membrane conductively connects the anode and the cathode while forming flow channels for water that are separated from one another as anode and cathode chambers and wherein the flow channels are configured to allow for the recirculation of the water flow within the chambers. The present invention further relates to an electrochemical method and apparatus for producing ozone or dissolved ozone in water in high concentrations by mean of recirculation of water between at least one chamber and at least one water tank.Type: ApplicationFiled: May 27, 2016Publication date: December 1, 2016Applicant: Advanced Diamond Technologies, Inc.Inventors: Donato M. Ceres, John Arthur Carlisle, Prabhu Arumugam, Matthew Hart
-
Publication number: 20160280567Abstract: An electrochemical system and method are disclosed for On Site Generation (OSG) of oxidants, such as free available chlorine, mixed oxidants and persulfate. Operation at high current density, using at least a diamond anode, provides for higher current efficiency, extended lifetime operation, and improved cost efficiency. High current density operation, in either a single pass or recycle mode, provides for rapid generation of oxidants, with high current efficiency, which potentially allows for more compact systems. Beneficially, operation in reverse polarity for a short cleaning cycle manages scaling, provides for improved efficiency and electrode lifetime and allows for use of impure feedstocks without requiring water softeners. Systems have application for generation of chlorine or other oxidants, including mixed oxidants providing high disinfection rate per unit of oxidant, e.g. for water treatment to remove microorganisms or for degradation of organics in industrial waste water.Type: ApplicationFiled: April 23, 2015Publication date: September 29, 2016Applicant: Advanced Diamond Technologies, Inc.Inventors: Ian W. Wylie, Prabhu U. Arumugam, Hongjun Zeng, John A. Carlisle
-
Patent number: 9228972Abstract: A diamond electrode and a diamond microelectrode array for biosensors and electroanalytical applications, such as electrochemical impedance spectroscopy (EIS), are disclosed. The electrode comprises a layer of ultra-smooth conductive nanocrystalline diamond (NCD) having a resistivity of >0.05 ?cm and a surface roughness of <20 nm Ra. Preferably, the diamond layer comprises boron or nitrogen-doped ultrananocrystalline diamond (UNCD) having an average grain size <10 nm and a surface roughness <10 nm Ra. It may be patterned to define a microelectrode array with a plurality of individually addressable electrodes, each having a diameter in the range from 100 nm to 100 ?m. The surface of each microelectrode is hydrogen-terminated before bio-functionalization, i.e. modifying with sensing molecules for detection of a specific biological or chemical target and coating with a blocker for reducing non-specific binding.Type: GrantFiled: February 22, 2013Date of Patent: January 5, 2016Assignee: Advanced Diamond Technologies, Inc.Inventors: Prabhu U. Arumugam, Shabnam Siddiqui, John Carlisle
-
Publication number: 20150140740Abstract: A method of fabrication, a device structure and a submount comprising high thermal conductivity (HTC) diamond on a HTC metal substrate, for thermal dissipation, are disclosed. The surface roughness of the diamond layer is controlled by depositing diamond on a sacrificial substrate, such as a polished silicon wafer, having a specific surface roughness. Following deposition of the diamond layer, an adhesion layer, e.g. comprising a refractory metal, such as tantalum, and at least one layer of HTC metal is provided. The HTC metal substrate is preferably copper or silver, and may be provided by electroforming metal onto a thin sputtered base layer, and optionally bonding another metal layer. The electrically non-conductive diamond layer has a smooth exposed surface, preferably ?10 nm RMS, suitable for patterning of contact metallization and/or bonding to a semiconductor device. Methods are also disclosed for patterning the diamond on metal substrate to facilitate dicing.Type: ApplicationFiled: December 15, 2014Publication date: May 21, 2015Applicant: Advanced Diamond Technologies, Inc.Inventors: Nicolaie A. Moldovan, John A. Carlisle, Hongjun Zeng
-
Patent number: 8979613Abstract: The present invention describes a microfabricated or nanofabricated structured diamond abrasive with a high surface density array of geometrical protrusions of pyramidal, truncated pyramidal or other shape, of designed shapes, sizes and placements, which provides for improved conditioning of CMP polishing pads, or other abrasive roles. Three methods of fabricating the structured diamond abrasive are described: molding of diamond into an array of grooves of various shapes and sizes etched into Si or another substrate material, with subsequent transferal onto another substrate and removal of the Si; etching of an array of geometrical protrusions into a thick diamond layer, and depositing a thick diamond layer over a substrate pre-patterned (or pre-structured) with an array of geometrical protrusions of designed sizes, shapes and placements on the surface.Type: GrantFiled: June 10, 2009Date of Patent: March 17, 2015Assignee: Advanced Diamond Technologies, Inc.Inventors: Nicolaie Moldovan, John Carlisle
-
Publication number: 20140174942Abstract: An electrochemical system and method are disclosed for On Site Generation (OSG) of oxidants, such as free available chlorine, mixed oxidants and persulfate. Operation at high current density, using at least a diamond anode, provides for higher current efficiency, extended lifetime operation, and improved cost efficiency. High current density operation, in either a single pass or recycle mode, provides for rapid generation of oxidants, with high current efficiency, which potentially allows for more compact systems. Beneficially, operation in reverse polarity for a short cleaning cycle manages scaling, provides for improved efficiency and electrode lifetime and allows for use of impure feedstocks without requiring water softeners. Systems have application for generation of chlorine or other oxidants, including mixed oxidants providing high disinfection rate per unit of oxidant, e.g. for water treatment to remove microorganisms or for degradation of organics in industrial waste water.Type: ApplicationFiled: October 15, 2013Publication date: June 26, 2014Applicant: ADVANCED DIAMOND TECHNOLOGIES, INC.Inventors: Ian W. Wylie, Prabhu U. Arumugam, Hongjun Zeng, John Arthur Carlisle
-
Patent number: 8701211Abstract: A method of producing sharp tips useful for scanning probe microscopy and related applications is described. The tips are formed by deposition into a mold(s) formed in a sacrificial crystalline semiconductor substrate with an exposed {311} surface which has been etched with a crystallographic etchant to form a 3-sided, trihedral or trigonal pyramidal mold(s) or indentation(s). The resultant tips, when released from the sacrificial mold material or substrate, are typically formed in the shape of a trigonal pyramid or a tetrahedron. Another embodiment involves starting with a {100} surface and the formation of two tips on opposite ends of a wedge at trigonal or trihedral points of the wedge. These tips are less susceptible to the tip wedge effect typical of tips formed using known methods.Type: GrantFiled: August 25, 2010Date of Patent: April 15, 2014Assignee: Advanced Diamond Technologies, Inc.Inventor: Nicolae Moldovan
-
Publication number: 20130213823Abstract: A diamond electrode and a diamond microelectrode array for biosensors and electroanalytical applications, such as electrochemical impedance spectroscopy (EIS), are disclosed. The electrode comprises a layer of ultra-smooth conductive nanocrystalline diamond (NCD) having a resistivity of >0.05 ?cm and a surface roughness of <20 nm Ra. Preferably, the diamond layer comprises boron or nitrogen-doped ultrananocrystalline diamond (UNCD) having an average grain size <10 nm and a surface roughness <10 nm Ra. It may be patterned to define a microelectrode array with a plurality of individually addressable electrodes, each having a diameter in the range from 100 nm to 100 ?m. The surface of each microelectrode is hydrogen-terminated before bio-functionalization, i.e. modifying with sensing molecules for detection of a specific biological or chemical target and coating with a blocker for reducing non-specific binding.Type: ApplicationFiled: February 22, 2013Publication date: August 22, 2013Applicant: Advanced Diamond Technologies, Inc.Inventor: Advanced Diamond Technologies, Inc.
-
Patent number: 8470701Abstract: Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.Type: GrantFiled: April 3, 2009Date of Patent: June 25, 2013Assignees: Advanced Diamond Technologies, Inc.Inventors: John A. Rogers, Tae Ho Kim, Won Mook Choi, Dae Hyeong Kim, Matthew Meitl, Etienne Menard, John Carlisle
-
Publication number: 20120288698Abstract: A method of fabrication, a device structure and a submount comprising high thermal conductivity (HTC) diamond on a HTC metal substrate, for thermal dissipation, are disclosed. The surface roughness of the diamond layer is controlled by depositing diamond on a sacrificial substrate, such as a polished silicon wafer, having a specific surface roughness. Following deposition of the diamond layer, an adhesion layer, e.g. comprising a refractory metal, such as tantalum, and at least one layer of HTC metal is provided. The HTC metal substrate is preferably copper or silver, and may be provided by electroforming metal onto a thin sputtered base layer, and optionally bonding another metal layer. The electrically non-conductive diamond layer has a smooth exposed surface, preferably ?10 nm RMS, suitable for patterning of contact metallization and/or bonding to a semiconductor device. Methods are also disclosed for patterning the diamond on metal substrate to facilitate dicing.Type: ApplicationFiled: March 19, 2012Publication date: November 15, 2012Applicant: Advanced Diamond Technology, IncInventors: Nicolaie A. MOLDOVAN, John Arthur Carlisle, Hongjun Zeng