Patents Assigned to Advanced Imaging Systems, Inc.
  • Patent number: 7796171
    Abstract: The anti-blooming structure of an image sensor is supplied with varying voltages during different integration periods such that charges generated in response to low level light are fully captured, whereas charges generated in response to a bright light spill over in a controlled manner. Accordingly, sensor's response may be generated to result in higher gains at low light levels and progressively lower gains at the higher light levels.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: September 14, 2010
    Assignee: Flir Advanced Imaging Systems, Inc.
    Inventor: David W. Gardner
  • Publication number: 20060015028
    Abstract: A system for detecting and analyzing electrical activity in the anatomy of an organism underlying an electrode array provides signals corresponding to electrical activity adjacent each electrode. Such signals are correlated to the underlying anatomy of the organism and representative outputs presented through various types of output devices. Such outputs may include variations in coloration or other qualities in correspondence with representations of underlying anatomical structures. The system includes novel electrode structures (200, 224, and 284) and methods for producing and attaching electrode arrays (240 and 280) to the organism. The exemplary form of the invention is used in connection with the diagnosis of muscle activity in the lower lumbar regions of humans. Levels of muscle activity detected are analyzed by correlation with the muscular structures underlying the electrode array. Forms of the invention may be used in other applications.
    Type: Application
    Filed: September 20, 2005
    Publication date: January 19, 2006
    Applicant: Advanced Imaging Systems, Inc.
    Inventors: Mark Finneran, Kathryn Alexander, B. Russell Alexander, Charles Wickham, Richard Hitchcock, Scott Howard
  • Patent number: 6973344
    Abstract: A system for detecting and analyzing electrical activity in the anatomy of an organism underlying an electrode array provides signals corresponding to electrical activity adjacent each electrode. Such signals are correlated to the underlying anatomy of the organism and representative outputs presented through various types of output devices. Such outputs may include variations in coloration or other qualities in correspondence with representations of underlying anatomical structures. The system includes novel electrode structures (200, 224, and 284) and methods for producing and attaching electrode arrays (240 and 280) to the organism. The exemplary form of the invention is used in connection with the diagnosis of muscle activity in the lower lumbar regions of humans. Levels of muscle activity detected are analyzed by correlation with the muscular structures underlying the electrode array. Forms of the invention may be used in other applications.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: December 6, 2005
    Assignee: Advanced Imaging Systems, Inc.
    Inventors: Mark T. Finneran, Kathryn E. Alexander, B. Russell Alexander, Charles E. Wickham, Jr., Richard L. Hitchcock, Scott D. Howard
  • Patent number: 6917825
    Abstract: A system for detecting and analyzing electrical activity in the anatomy of an organism underlying an electrode array provides signals corresponding to electrical activity adjacent each electrode. Such signals are correlated to the underlying anatomy of the organism and representative outputs presented through various types of output devices. Such outputs may include variations in coloration or other qualities in correspondence with representations of underlying anatomical structures. The system includes novel electrode structures (200, 224, and 284) and methods for producing and attaching electrode arrays (240 and 280) to the organism. The exemplary form of the invention is used in connection with the diagnosis of muscle activity in the lower lumbar regions of humans. Levels of muscle activity detected are analyzed by correlation with the muscular structures underlying the electrode array. Forms of the invention may be used in other applications.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: July 12, 2005
    Assignee: Advanced Imaging Systems, Inc.
    Inventors: Mark T. Finneran, Kathryn E. Alexander, B. Russell Alexander, Charles E. Wickham, Jr., Richard L. Hitchcock, Scott D. Howard
  • Patent number: 6915148
    Abstract: A system for detecting and analyzing electrical activity in the anatomy of an organism underlying an electrode array provides signals corresponding to electrical activity adjacent each electrode. Such signals are correlated to the underlying anatomy of the organism and representative outputs presented through various types of output devices. Such outputs may include variations in coloration or other qualities in correspondence with representations of underlying anatomical structures. The system includes novel electrode structures (200, 224, and 284) and methods for producing and attaching electrode arrays (240 and 280) to the organism. The exemplary form of the invention is used in connection with the diagnosis of muscle activity in the lower lumbar regions of humans. Levels of muscle activity detected are analyzed by correlation with the muscular structures underlying the electrode array. Forms of the invention may be used in other applications.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: July 5, 2005
    Assignee: Advanced Imaging Systems, Inc.
    Inventors: Mark T. Finneran, Kathryn E. Alexander, B. Russell Alexander, Charles E. Wickham, Jr., Richard L. Hitchcock, Scott D. Howard
  • Patent number: 6856833
    Abstract: A system for detecting and analyzing electrical activity in the anatomy of an organism underlying an electrode array provides signals corresponding to electrical activity adjacent each electrode. Such signals are correlated to the underlying anatomy of the organism and representative outputs presented through various types of output devices. Such outputs may include variations in coloration or other qualities in correspondence with representations of underlying anatomical structures. The system includes novel electrode structures (200, 224, and 284) and methods for producing and attaching electrode arrays (240 and 280) to the organism. The exemplary form of the invention is used in connection with the diagnosis of muscle activity in the lower lumbar regions of humans. Levels of muscle activity detected are analyzed by correlation with the muscular structures underlying the electrode array. Forms of the invention may be used in other applications.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: February 15, 2005
    Assignee: Advanced Imaging Systems, Inc.
    Inventors: Mark T. Finneran, Kathryn E. Alexander, B. Russell Alexander, Charles E. Wickham, Jr., Richard L. Hitchcock, Scott D. Howard
  • Patent number: 6745062
    Abstract: A system for detecting and analyzing electrical activity in the anatomy of an organism underlying an electrode array provides signals corresponding to electrical activity adjacent each electrode. Such signals are correlated to the underlying anatomy of the organism and representative outputs presented through various types of output devices. Such outputs may include variations in coloration or other qualities in correspondence with representations of underlying anatomical structures. The system includes novel electrode structures (200, 224, and 284) and methods for producing and attaching electrode arrays (240 and 280) to the organism. The exemplary form of the invention is used in connection with the diagnosis of muscle activity in the lower lumbar regions of humans. Levels of muscle activity detected are analyzed by correlation with the muscular structures underlying the electrode array. Forms of the invention may be used in other applications.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: June 1, 2004
    Assignee: Advanced Imaging Systems, Inc.
    Inventors: Mark T. Finneran, Kathryn E. Alexander, B. Russell Alexander, Charles E. Wickham, Jr., Richard L. Hitchcock, Scott D. Howard
  • Publication number: 20040054275
    Abstract: A system for detecting and analyzing electrical activity in the anatomy of an organism underlying an electrode array provides signals corresponding to electrical activity adjacent each electrode. Such signals are correlated to the underlying anatomy of the organism and representative outputs presented through various types of output devices. Such outputs may include variations in coloration or other qualities in correspondence with representations of underlying anatomical structures. The system includes novel electrode structures (200, 224, and 284) and methods for producing and attaching electrode arrays (240 and 280) to the organism. The exemplary form of the invention is used in connection with the diagnosis of muscle activity in the lower lumbar regions of humans. Levels of muscle activity detected are analyzed by correlation with the muscular structures underlying the electrode array. Forms of the invention may be used in other applications.
    Type: Application
    Filed: August 15, 2003
    Publication date: March 18, 2004
    Applicant: Advanced imaging systems, Inc.
    Inventors: Mark T. Finneran, Kathryn E. Alexander, B. Russell Alexander, Charles E. Wickham, Richard L. Hitchcock, Scott D. Howard
  • Publication number: 20040054273
    Abstract: A system for detecting and analyzing electrical activity in the anatomy of an organism underlying an electrode array provides signals corresponding to electrical activity adjacent each electrode. Such signals are correlated to the underlying anatomy of the organism and representative outputs presented through various types of output devices. Such outputs may include variations in coloration or other qualities in correspondence with representations of underlying anatomical structures. The system includes novel electrode structures (200, 224, and 284) and methods for producing and attaching electrode arrays (240 and 280) to the organism. The exemplary form of the invention is used in connection with the diagnosis of muscle activity in the lower lumbar regions of humans. Levels of muscle activity detected are analyzed by correlation with the muscular structures underlying the electrode array. Forms of the invention may be used in other applications.
    Type: Application
    Filed: August 15, 2003
    Publication date: March 18, 2004
    Applicant: Advanced imaging systems, Inc.
    Inventors: Mark T. Finneran, Kathryn E. Alexander, B. Russell Alexander, Charles E. Wickham, Richard L. Hitchcock, Scott D. Howard
  • Publication number: 20040054274
    Abstract: A system for detecting and analyzing electrical activity in the anatomy of an organism underlying an electrode array provides signals corresponding to electrical activity adjacent each electrode. Such signals are correlated to the underlying anatomy of the organism and representative outputs presented through various types of output devices. Such outputs may include variations in coloration or other qualities in correspondence with representations of underlying anatomical structures. The system includes novel electrode structures (200, 224, and 284) and methods for producing and attaching electrode arrays (240 and 280) to the organism. The exemplary form of the invention is used in connection with the diagnosis of muscle activity in the lower lumbar regions of humans. Levels of muscle activity detected are analyzed by correlation with the muscular structures underlying the electrode array. Forms of the invention may be used in other applications.
    Type: Application
    Filed: August 15, 2003
    Publication date: March 18, 2004
    Applicant: Advanced Imaging Systems, Inc.
    Inventors: Mark T. Finneran, Kathryn E. Alexander, B. Russell Alexander, Charles E. Wickham, Richard L. Hitchcock, Scott D. Howard
  • Publication number: 20040054276
    Abstract: A system for detecting and analyzing electrical activity in the anatomy of an organism underlying an electrode array provides signals corresponding to electrical activity adjacent each electrode. Such signals are correlated to the underlying anatomy of the organism and representative outputs presented through various types of output devices. Such outputs may include variations in coloration or other qualities in correspondence with representations of underlying anatomical structures. The system includes novel electrode structures (200, 224, and 284) and methods for producing and attaching electrode arrays (240 and 280) to the organism. The exemplary form of the invention is used in connection with the diagnosis of muscle activity in the lower lumbar regions of humans. Levels of muscle activity detected are analyzed by correlation with the muscular structures underlying the electrode array. Forms of the invention may be used in other applications.
    Type: Application
    Filed: August 15, 2003
    Publication date: March 18, 2004
    Applicant: Advanced Imaging Systems, Inc.
    Inventors: Mark T. Finneran, Kathryn E. Alexander, B. Russell Alexander, Charles E. Wickham, Richard L. Hitchcock, Scott D. Howard