Patents Assigned to Advanced Inquiry Systems, Inc.
  • Publication number: 20140347086
    Abstract: An apparatus, suitable for coupling a pads of integrated circuits on wafer to the pogo pins of a pogo tower in a test system without the need of a probe card, includes a body having a first surface and a second surface, the body having a substantially circular central portion, and a plurality of bendable arms extending outwardly from the central portion, each bendable arm having a connector tab disposed at the distal end thereof; a first plurality of contact terminals disposed on the second surface of the central portion of the body, the first plurality of contact terminals arranged in pattern to match the layout of pads on a wafer to be contacted; at least one contact terminal disposed on the first surface of the plurality of connector tabs; and a plurality of electrically conductive pathways disposed in the body such that each of the first plurality of contact terminals is electrically connected to a corresponding one of the contact terminals on the first surface of the connector tabs.
    Type: Application
    Filed: April 21, 2014
    Publication date: November 27, 2014
    Applicant: ADVANCED INQUIRY SYSTEMS, INC.
    Inventor: Morgan T. Johnson
  • Patent number: 8889526
    Abstract: A wafer translator is provided with a patterned layer of wafer bonding thermoset plastic and is removably attached with a wafer so as to form a wafer/wafer translator pair. The wafer translator acts as a mechanical support during a thinning process as well as during a wafer dicing operation. The singulated integrated circuits are then removed from the wafer translator. In some embodiments, wafer level testing of the integrated circuits on the wafer is performed subsequent to the wafer thinning process but before the wafer and wafer translator are separated. In other embodiments, wafer level testing of the integrated circuits on the wafer is performed subsequent to the wafer dicing operation but before the diced wafer and wafer translator are separated.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: November 18, 2014
    Assignee: Advanced Inquiry Systems, Inc.
    Inventor: Morgan T. Johnson
  • Patent number: 8872533
    Abstract: A wafer testing system and associated methods of use an manufacture are disclosed herein. In one embodiment, the wafer testing system includes an assembly for releaseably attaching a wafer to a wafer translator and the wafer translator to an interposer by means of separately operable vacuums, or pressure differentials. The assembly includes a wafer translator support ring coupled to the wafer translator, wherein a first flexible material extends from the wafer translator support ring so as to enclose the space between the wafer translator and the interposer so that the space may be evacuated by a first vacuum through one or more first evacuation paths. The assembly can further include a wafer support ring coupled to the wafer and the chuck, wherein a second flexible material extends from wafer support ring so as to enclose the space between the wafer and the wafer translator so that the space may be evacuated by a second vacuum through one or more second evacuation pathways.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: October 28, 2014
    Assignee: Advanced Inquiry Systems, Inc.
    Inventors: Aaron Durbin, David Keith, Morgan Johnson
  • Publication number: 20140197858
    Abstract: A wafer translator and a wafer, removably attached to each other, provides the electrical connection to electrical contacts on integrated circuits on a wafer in such a manner that the electrical contacts are substantially undamaged in the process of making such electrical connections. Various embodiments of the present invention provide a gasketless sealing means for facilitating the formation by vacuum attachment of the wafer/wafer translator pair. In this way, no gasket is required to be disposed between the wafer and the wafer translator. Air, or gas, is evacuated from between the wafer and wafer translator through one or more evacuation pathways in the gasketless sealing means.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 17, 2014
    Applicant: ADVANCED INQUIRY SYSTEMS, INC.
    Inventors: Aaron Durbin, Morgan T. Johnson, Jose A. Santos
  • Patent number: 8779789
    Abstract: Translators coupleable to opposing surfaces of microelectronic substrates for testing, and associated systems and methods are disclosed. An arrangement in accordance with one embodiment includes a microelectronic substrate having a first major surface, a second major face facing opposite from the first major surface, and electrically conductive through-substrate vias extending through the substrate and electrically accessible from both the first and second surfaces.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 15, 2014
    Assignee: Advanced Inquiry Systems, Inc.
    Inventor: Morgan T. Johnson
  • Publication number: 20140176174
    Abstract: Nano spike contactors suitable for semiconductor device test, and associated systems and methods are disclosed. A representative apparatus includes a translator having a wafer side positioned to face toward a device under test and an inquiry side facing away from the wafer side. A plurality of wafer-side sites are carried by the translator at the wafer side of the translator. The nanospikes can be attached to nanospike sites on a wafer side of a translator. Because of their small size, multiple nanospikes make contact with a single pad/solderball on the semiconductor device. In some embodiments, the nanospikes can be formed by sputtering over a metal carrier with a photoresist mask. In particular embodiments, the nanospikes have generally conical cross-section.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 26, 2014
    Applicant: ADVANCED INQUIRY SYSTEMS, INC.
    Inventor: ADVANCED INQUIRY SYSTEMS, INC.
  • Publication number: 20140179031
    Abstract: Nanospike contactors suitable for semiconductor device test, and associated systems and methods are disclosed. A representative apparatus includes a package having a wafer side positioned to face toward a device under test and an inquiry side facing away from the wafer side. A plurality of wafer side sites are carried at the wafer side of the package. The nanospikes can be attached to nanospike sites on a wafer side of the package. Because of their small size, multiple nanospikes make contact with a single pad/solderball on the semiconductor device. In some embodiments, after detecting that the device under test passes the test, the device under the test can be packaged to create a known good die in a package.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 26, 2014
    Applicant: ADVANCED INQUIRY SYSTEMS, INC.
    Inventor: ADVANCED INQUIRY SYSTEMS, INC.
  • Patent number: 8704544
    Abstract: An apparatus, suitable for coupling a pads of integrated circuits on wafer to the pogo pins of a pogo tower in a test system without the need of a probe card, includes a body having a first surface and a second surface, the body having a substantially circular central portion, and a plurality of bendable arms extending outwardly from the central portion, each bendable arm having a connector tab disposed at the distal end thereof; a first plurality of contact terminals disposed on the second surface of the central portion of the body, the first plurality of contact terminals arranged in pattern to match the layout of pads on a wafer to be contacted; at least one contact terminal disposed on the first surface of the plurality of connector tabs; and a plurality of electrically conductive pathways disposed in the body such that each of the first plurality of contact terminals is electrically connected to a corresponding one of the contact terminals on the first surface of the connector tabs.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: April 22, 2014
    Assignee: Advanced Inquiry Systems, Inc.
    Inventor: Morgan T. Johnson
  • Patent number: 8697456
    Abstract: A pattern of conductive ink is disposed on the topside of the unsingulated integrated circuits of a wafer, and, typically after wafer probing, the pattern of conductive ink is removed. The conductive ink pattern provides an electrical pathway between bond pads on an integrated circuit and large contact pads disposed on the topside of the integrated circuit. Each of the large contact pads is much greater in area than the corresponding bond pads, and are spaced apart so that the pitch of the large contact pads is much greater than that of the bond pads. In one aspect of the present invention, the conductive ink includes a mixture of conductive particles and wafer bonding thermoset plastic. In another aspect of the present invention, the conductive ink is heated and disposed on a wafer by an ink jet printing system.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: April 15, 2014
    Assignee: Advanced Inquiry Systems, Inc.
    Inventor: Morgan T Johnson
  • Publication number: 20130337587
    Abstract: A pattern of conductive ink is disposed on the topside of the unsingulated integrated circuits of a wafer, and, typically after wafer probing, the pattern of conductive ink is removed. The conductive ink pattern provides an electrical pathway between bond pads on an integrated circuit and large contact pads disposed on the topside of the integrated circuit. Each of the large contact pads is much greater in area than the corresponding bond pads, and are spaced apart so that the pitch of the large contact pads is much greater than that of the bond pads. In one aspect of the present invention, the conductive ink includes a mixture of conductive particles and wafer bonding thermoset plastic. In another aspect of the present invention, the conductive ink is heated and disposed on a wafer by an ink jet printing system.
    Type: Application
    Filed: July 1, 2013
    Publication date: December 19, 2013
    Applicant: ADVANCED INQUIRY SYSTEMS, INC.
    Inventor: Morgan T. Johnson
  • Publication number: 20130314115
    Abstract: A wafer testing system and associated methods of use an manufacture are disclosed herein. In one embodiment, the wafer testing system includes an assembly for releaseably attaching a wafer to a wafer translator and the wafer translator to an interposer by means of separately operable vacuums, or pressure differentials. The assembly includes a wafer translator support ring coupled to the wafer translator, wherein a first flexible material extends from the wafer translator support ring so as to enclose the space between the wafer translator and the interposer so that the space may be evacuated by a first vacuum through one or more first evacuation paths. The assembly can further include a wafer support ring coupled to the wafer and the chuck, wherein a second flexible material extends from wafer support ring so as to enclose the space between the wafer and the wafer translator so that the space may be evacuated by a second vacuum through one or more second evacuation pathways.
    Type: Application
    Filed: March 25, 2013
    Publication date: November 28, 2013
    Applicant: Advanced Inquiry Systems, Inc.
    Inventor: Advanced Inquiry Systems, Inc.
  • Publication number: 20130265071
    Abstract: Translators coupleable to opposing surfaces of microelectronic substrates for testing, and associated systems and methods are disclosed. An arrangement in accordance with one embodiment includes a microelectronic substrate having a first major surface, a second major face facing opposite from the first major surface, and electrically conductive through-substrate vias extending through the substrate and electrically accessible from both the first and second surfaces.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 10, 2013
    Applicant: ADVANCED INQUIRY SYSTEMS, INC.
    Inventor: Morgan Johnson
  • Patent number: 8536062
    Abstract: Methods are provided for removing an oxide layer from a metal pad on an integrated circuit in order to reduce contact resistance. In one embodiment, aluminum oxide, on the surface of a bond pad substantially comprised of aluminum, is reacted with a first chemical agent to form an inorganic salt, and the inorganic salt is then reacted with a second chemical agent leaving a substantially bare, that is, unoxidized, aluminum surface.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: September 17, 2013
    Assignee: Advanced Inquiry Systems, Inc.
    Inventor: Jens Ruffler
  • Publication number: 20130187675
    Abstract: A wafer translator and a wafer, removably attached to each other, provides the electrical connection to electrical contacts on integrated circuits on a wafer in such a manner that the electrical contacts are substantially undamaged in the process of making such electrical connections. Various embodiments of the present invention provide a gasketless sealing means for facilitating the formation by vacuum attachment of the wafer/wafer translator pair. In this way, no gasket is required to be disposed between the wafer and the wafer translator. Air, or gas, is evacuated from between the wafer and wafer translator through one or more evacuation pathways in the gasketless sealing means.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 25, 2013
    Applicant: ADVANCED INQUIRY SYSTEMS, INC.
    Inventor: Advanced Inquiry Systems, Inc.
  • Patent number: 8476630
    Abstract: A pattern of conductive ink is disposed on the topside of the unsingulated integrated circuits of a wafer, and, typically after wafer probing, the pattern of conductive ink is removed. The conductive ink pattern provides an electrical pathway between bond pads on an integrated circuit and large contact pads disposed on the topside of the integrated circuit. Each of the large contact pads is much greater in area than the corresponding bond pads, and are spaced apart so that the pitch of the large contact pads is much greater than that of the bond pads. In one aspect of the present invention, the conductive ink includes a mixture of conductive particles and wafer bonding thermoset plastic. In another aspect of the present invention, the conductive ink is heated and disposed on a wafer by an ink jet printing system.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: July 2, 2013
    Assignee: Advanced Inquiry Systems, Inc.
    Inventor: Morgan T. Johnson
  • Patent number: 8461024
    Abstract: A wafer translator is provided with a patterned layer of wafer bonding thermoset plastic and is removably attached with a wafer so as to form a wafer/wafer translator pair. The wafer translator acts as a mechanical support during a thinning process as well as during a wafer dicing operation. The singulated integrated circuits are then removed from the wafer translator. In some embodiments, wafer level testing of the integrated circuits on the wafer is performed subsequent to the wafer thinning process but before the wafer and wafer translator are separated. In other embodiments, wafer level testing of the integrated circuits on the wafer is performed subsequent to the wafer dicing operation but before the diced wafer and wafer translator are separated.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: June 11, 2013
    Assignee: Advanced Inquiry Systems, Inc.
    Inventor: Morgan T. Johnson
  • Patent number: 8405414
    Abstract: A wafer testing system and associated methods of use and manufacture are disclosed herein. In one embodiment, the wafer testing system includes an assembly for releaseably attaching a wafer to a wafer translator and the wafer translator to an interposer by means of separately operable vacuums, or pressure differentials. The assembly includes a wafer translator support ring coupled to the wafer translator, wherein a first flexible material extends from the wafer translator support ring so as to enclose the space between the wafer translator and the interposer so that the space may be evacuated by a first vacuum through one or more first evacuation paths. The assembly can further include a wafer support ring coupled to the wafer and the chuck, wherein a second flexible material extends from wafer support ring so as to enclose the space between the wafer and the wafer translator so that the space may be evacuated by a second vacuum through one or more second evacuation pathways.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: March 26, 2013
    Assignee: Advanced Inquiry Systems, Inc.
    Inventors: Aaron Durbin, David Keith, Morgan T. Johnson
  • Patent number: 8362797
    Abstract: A wafer translator and a wafer, removably attached to each other, provides the electrical connection to electrical contacts on integrated circuits on a wafer in such a manner that the electrical contacts are substantially undamaged in the process of making such electrical connections. Various embodiments of the present invention provide a gasketless sealing means for facilitating the formation by vacuum attachment of the wafer/wafer translator pair. In this way, no gasket is required to be disposed between the wafer and the wafer translator. Air, or gas, is evacuated from between the wafer and wafer translator through one or more evacuation pathways in the gasketless sealing means.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: January 29, 2013
    Assignee: Advanced Inquiry Systems, Inc.
    Inventors: Aaron Durbin, Morgan T Johnson, Jose A Santos
  • Publication number: 20130021052
    Abstract: Methods and apparatus for testing unsingulated integrated circuits on a wafer include adapting a wafer prober for use with full-wafer-contacter disposed on the wafer. Some embodiments include placing wafer on a chuck of the prober, aligning the wafer to a full-wafer contacter incorporated in the wafer prober, removably attaching the wafer to the full wafer contacter, separating the wafer from the chuck, and making electrical contact to one or more integrated circuits of the wafer by making physical contact with a surface of the full-wafer contacter that faces away from the wafer.
    Type: Application
    Filed: March 10, 2011
    Publication date: January 24, 2013
    Applicant: Advanced Inquiry Systems, Inc.
    Inventor: Morgan T. Johnson
  • Publication number: 20120156811
    Abstract: A pattern of conductive ink is disposed on the topside of the unsingulated integrated circuits of a wafer, and, typically after wafer probing, the pattern of conductive ink is removed. The conductive ink pattern provides an electrical pathway between bond pads on an integrated circuit and large contact pads disposed on the topside of the integrated circuit. Each of the large contact pads is much greater in area than the corresponding bond pads, and are spaced apart so that the pitch of the large contact pads is much greater than that of the bond pads. In one aspect of the present invention, the conductive ink includes a mixture of conductive particles and wafer bonding thermoset plastic. In another aspect of the present invention, the conductive ink is heated and disposed on a wafer by an ink jet printing system.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 21, 2012
    Applicant: Advanced Inquiry Systems, Inc.
    Inventor: Morgan T. Johnson