Patents Assigned to Advanced Manufacturing LLC
  • Patent number: 11837766
    Abstract: A system and method of continuous fabrication of multi-material graded structures using additive manufacturing is disclosed. Using multi-material feedstocks and optimized processing parameters, the gradient on composition and structure are controlled to achieve smooth transition from one functional component to another functional component. A multi-material graded structure is produced as the feedstocks are transported from the feedstock reservoir system comprised of many different materials. Interface transition from one functional layer to the next is gradient, controlled by feedstock mixture ratios based on the flow rate control for the feedstock system. Composition includes chemical composition, physical composition, and porosity. Continuous automatic additive manufacturing method makes the fabrication more efficient and avoids joining problems.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: December 5, 2023
    Assignee: Advanced Manufacturing LLC
    Inventors: Dongsheng Li, Thomas Maloney
  • Publication number: 20220149411
    Abstract: A system and method of continuous fabrication of multi-material graded structures using additive manufacturing is disclosed. Using multi-material feedstocks and optimized processing parameters, the gradient on composition and structure are controlled to achieve smooth transition from one functional component to another functional component. A multi-material graded structure is produced as the feedstocks are transported from the feedstock reservoir system comprised of many different materials. Interface transition from one functional layer to the next is gradient, controlled by feedstock mixture ratios based on the flow rate control for the feedstock system. Composition includes chemical composition, physical composition, and porosity. Continuous automatic additive manufacturing method makes the fabrication more efficient and avoids joining problems.
    Type: Application
    Filed: November 9, 2020
    Publication date: May 12, 2022
    Applicant: Advanced Manufacturing LLC
    Inventors: Dongsheng Li, Thomas Maloney
  • Patent number: 11047812
    Abstract: This invention provides a method, system, and computer program to visualize texture (crystal orientation distribution) heterogeneity in polycrystalline aggregate part in large length scale. This is a critical representation step for microstructure characterization, useful in effective behavior simulation, risk analysis and hotspot identification. In contrast to orientation image map where each color component represents a crystal orientation, each color in this macrotexture map represents a set of texture. Different color represent different texture and similar texture shall have similar color. This method will provide a critical tool in evaluating texture heterogeneity of components, leading to a first-hand understanding of property heterogeneity and anisotropy. For an experienced user, these maps serve the same purpose in identifying high risk locations in the investigated component as medical imaging maps do for diagnosis purpose.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: June 29, 2021
    Assignee: Advanced Manufacturing LLC
    Inventor: Dongsheng Li
  • Patent number: 10800098
    Abstract: Sputtering printheads, additive manufacturing systems comprising the same, and methods for additive manufacturing are provided. Sputtering printheads of the present invention use a plasma to sputter a feedstock material which is directed towards a target. A printhead can include a heater to heat the feedstock to, or near, the material's melting point as it is being sputtered to increase the deposition rate. A convergent nozzle can also increase the deposition rate. Printheads of the present invention are readily reconfigurable such that the same printhead can be used to deposit different materials, such as metals and non-metals, in succession by replacing the feedstock material and making changes to a few settings. Additive manufacturing systems of the present invention can be operated at normal room temperatures and pressure.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: October 13, 2020
    Assignee: Obsidian Advanced Manufacturing, LLC
    Inventor: Shomeek Mukhopadhyay
  • Patent number: 10596758
    Abstract: Sputtering printheads, additive manufacturing systems comprising the same, and methods for additive manufacturing are provided. Sputtering printheads of the present invention use a plasma to sputter a feedstock material which is directed towards a target. A printhead can include a heater to heat the feedstock to, or near, the material's melting point as it is being sputtered to increase the deposition rate. A convergent nozzle can also increase the deposition rate. Printheads of the present invention are readily reconfigurable such that the same printhead can be used to deposit different materials, such as metals and non-metals, in succession by replacing the feedstock material and making changes to a few settings. Additive manufacturing systems of the present invention can be operated at normal room temperatures and pressure.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: March 24, 2020
    Assignee: OBSIDIAN ADVANCED MANUFACTURING, LLC
    Inventor: Shomeek Mukhopadhyay
  • Publication number: 20190353602
    Abstract: This invention provides a method, system, and computer program to visualize texture (crystal orientation distribution) heterogeneity in polycrystalline aggregate part in large length scale. This is a critical representation step for microstructure characterization, useful in effective behavior simulation, risk analysis and hotspot identification. In contrast to orientation image map where each color component represents a crystal orientation, each color in this macrotexture map represents a set of texture. Different color represent different texture and similar texture shall have similar color. This method will provide a critical tool in evaluating texture heterogeneity of components, leading to a first-hand understanding of property heterogeneity and anisotropy. For an experienced user, these maps serve the same purpose in identifying high risk locations in the investigated component as medical imaging maps do for diagnosis purpose.
    Type: Application
    Filed: August 2, 2019
    Publication date: November 21, 2019
    Applicant: Advanced Manufacturing LLC
    Inventor: Dongsheng Li
  • Patent number: 10371650
    Abstract: This invention provides a method, system, and computer program to visualize texture (crystal orientation distribution) heterogeneity in polycrystalline aggregate part in large length scale. This is a critical representation step for microstructure characterization, useful in effective behavior simulation, risk analysis and hotspot identification. In contrast to orientation image map where each color component represents a crystal orientation, each color in this macrotexture map represents a set of texture. Different color represent different texture and similar texture shall have similar color. This method will provide a critical tool in evaluating texture heterogeneity of components, leading to a first-hand understanding of property heterogeneity and anisotropy. For an experienced user, these maps serve the same purpose in identifying high risk locations in the investigated component as medical imaging maps do for diagnosis purpose.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: August 6, 2019
    Assignee: Advanced Manufacturing LLC
    Inventor: Dongsheng Li
  • Patent number: 10357920
    Abstract: Sputtering printheads, additive manufacturing systems comprising the same, and methods for additive manufacturing are provided. Sputtering printheads of the present invention use a plasma to sputter a feedstock material which is directed towards a target. A printhead can include a heater to heat the feedstock to, or near, the material's melting point as it is being sputtered to increase the deposition rate. A convergent nozzle can also increase the deposition rate. Printheads of the present invention are readily reconfigurable such that the same printhead can be used to deposit different materials, such as metals and non-metals, in succession by replacing the feedstock material and making changes to a few settings. Additive manufacturing systems of the present invention can be operated at normal room temperatures and pressure.
    Type: Grant
    Filed: December 31, 2017
    Date of Patent: July 23, 2019
    Assignee: OBSIDIAN ADVANCED MANUFACTURING, LLC
    Inventor: Shomeek Mukhopadhyay
  • Publication number: 20180080884
    Abstract: This invention provides a method, system, and computer program to visualize texture (crystal orientation distribution) heterogeneity in polycrystalline aggregate part in large length scale. This is a critical representation step for microstructure characterization, useful in effective behavior simulation, risk analysis and hotspot identification. In contrast to orientation image map where each color component represents a crystal orientation, each color in this macrotexture map represents a set of texture. Different color represent different texture and similar texture shall have similar color. This method will provide a critical tool in evaluating texture heterogeneity of components, leading to a first-hand understanding of property heterogeneity and anisotropy. For an experienced user, these maps serve the same purpose in identifying high risk locations in the investigated component as medical imaging maps do for diagnosis purpose.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Applicant: Advanced Manufacturing LLC
    Inventor: Dongsheng Li