Patents Assigned to ADVANCED MATERIAL TECHNOLOGIES, INC.
  • Publication number: 20220181541
    Abstract: According to the present invention, a piezoelectric film having a single crystal structure is able to be formed, from various piezoelectric materials, on a film structure of the present invention. A film structure according to the present invention includes: a substrate; a buffer film which is formed on the substrate and has a tetragonal crystal structure containing zirconia; a metal film containing a platinum group element, which is formed on the buffer film by means of epitaxial growth; and a film containing Sr(Ti1?x, Rux)O3 (wherein 0?x?1), which is formed on the metal film by means of epitaxial growth.
    Type: Application
    Filed: December 27, 2019
    Publication date: June 9, 2022
    Applicant: Advanced Material Technologies Inc.
    Inventors: Takeshi KIJIMA, Akio KONISHI
  • Patent number: 11136269
    Abstract: A method of preparation of an article having a sliding surface and comprising graphitic particles, comprises the steps of: i) impregnating open porosity in a porous body with a resin comprising graphitic particles; and ii) hardening said resin.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: October 5, 2021
    Assignee: Morgan Advanced Materials and Technology, Inc.
    Inventors: Andrew Hosty, Andrew Goshe, Michael Murray
  • Patent number: 10854808
    Abstract: Ferroelectric ceramics including: a Pb(Zr1-BTiB)O3 seed crystal film formed on a foundation film; and a Pb(Zr1-xTix)O3 crystal film, wherein: the seed crystal film is formed by sputtering while the foundation film is being disposed on an upper side of a sputtering target and the foundation film is being made to face the sputtering target; in the seed crystal film, a Zr/Ti ratio on the crystal film side from the center in the thickness direction thereof is larger than a Zr/Ti ratio on the foundation film side from the center in the thickness direction thereof; the crystal film is crystallized by coating and heating a solution containing, in an organic solvent, a metal compound wholly or partially containing ingredient metals of the crystal film and a partial polycondensation product thereof; and the B and the x satisfy formulae 2 and 3, respectively, below, 0.1<B<1??formula 2 0.1<x<1??formula 3.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: December 1, 2020
    Assignee: ADVANCED MATERIAL TECHNOLOGIES, INC.
    Inventor: Takeshi Kijima
  • Publication number: 20200357978
    Abstract: A film structure includes a substrate (11) which is a silicon substrate including an upper surface (11a) composed of a (100) plane, an alignment film (12) which is formed on the upper surface (11a) and includes a zirconium oxide film which has a cubic crystal structure and is (100)-oriented, and a conductive film (13) which is formed on the alignment film (12) and includes a platinum film which has a cubic crystal structure and is (100)-oriented. An average interface roughness of an interface (IF1) between the alignment film (12) and the conductive film (13) is greater than an average interface roughness of an interface (IF2) between the substrate (11) and the alignment film (12).
    Type: Application
    Filed: November 9, 2018
    Publication date: November 12, 2020
    Applicant: ADVANCED MATERIAL TECHNOLOGIES INC.
    Inventors: Takeshi KIJIMA, Yasuaki HAMADA
  • Patent number: 10657999
    Abstract: A plasma CVD device includes a chamber (102), an anode (104), a cathode (103), a holding portion which holds a substrate to be deposited (101) a plasma wall (88) an anti-adhesion member (91) which is arranged between a first gap (81) between the anode and the plasma wall and a first inner surface (102a) of the chamber and a pedestal (92) which is arranged between the anti-adhesion member and a back surface of the anode and which is electrically connected to the anode. The maximum diameter of each of the first gap, a second gap (82) between the anode and the anti-adhesion member, a third gap (83) between the back surface of the anode and the pedestal, a fourth gap (84) between the plasma wall and the anti-adhesion member and a fifth gap (85) between the anti-adhesion member and the pedestal is equal to or less than 4 mm.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: May 19, 2020
    Assignee: ADVANCED MATERIAL TECHNOLOGIES, INC.
    Inventors: Kouji Abe, Toshiyuki Watanabe, Masafumi Tanaka, Kohei Okudaira, Hiroyasu Sekino, Yuuji Honda
  • Publication number: 20190123257
    Abstract: A film structure (10) includes a substrate (11), a piezoelectric film (14) formed on the substrate (11) and containing first composite oxide represented by a composition formula Pb(Zr1?xTix)O3, and a piezoelectric film (15) formed on the piezoelectric film (14) and containing second composite oxide represented by a composition formula Pb(Zr1?yTiy)O3. In the composition formulae, x satisfies 0.10<x?0.20, and y satisfies 0.35?y?0.55. The piezoelectric film (14) has tensile stress, and the piezoelectric film (15) has compressive stress.
    Type: Application
    Filed: May 31, 2017
    Publication date: April 25, 2019
    Applicant: ADVANCED MATERIAL TECHNOLOGIES INC.
    Inventor: Takeshi KIJIMA
  • Patent number: 10243134
    Abstract: An object is to cause a piezoelectric film to perform a piezoelectric operation at a higher voltage than the conventional piezoelectric film. An aspect of the present invention is a piezoelectric film, wherein a voltage at which a piezoelectric butterfly curve that is a result obtained by measuring a piezoelectric property of a piezoelectric film takes a minimum value is larger by 2 V or more than a coercive voltage of a hysteresis curve that is a result obtained by measuring a hysteresis property of said piezoelectric film. The piezoelectric film includes an anti-ferroelectric film, and a ferroelectric film formed on the anti-ferroelectric film.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: March 26, 2019
    Assignee: ADVANCED MATERIAL TECHNOLOGIES, INC.
    Inventors: Takeshi Kijima, Yasuaki Hamada, Takeshi Nomura
  • Publication number: 20190032205
    Abstract: A plasma CVD apparatus efficiently coats the surfaces of fine particles with a thin film or super-fine particles by concentrating a plasma near the fine particles. The plasma CVD apparatus includes a chamber, a container disposed in the chamber for housing the fine particles, the container having a polygonal inner shape in a cross section substantially perpendicular to a longitudinal axis of the container, a ground shielding member for shielding a surface of the container other than a housing face, a rotation mechanism for causing the container to rotate or act as a pendulum on an axis of rotation substantially perpendicular to the cross section, an opposed electrode disposed in the container so as to face the housing face, a plasma power source electrically connected to the container, a gas introducing mechanism for introducing a raw gas into the container, and an evacuation mechanism for evacuating the chamber.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 31, 2019
    Applicant: Advanced Material Technologies, Inc.
    Inventors: Yuuji HONDA, Takayuki Abe
  • Patent number: 10125421
    Abstract: A plasma CVD apparatus efficiently coats the surfaces of fine particles with a thin film or super-fine particles by concentrating a plasma near the fine particles. The plasma CVD apparatus includes a chamber, a container disposed in the chamber for housing the fine particles, the container having a polygonal inner shape in a cross section substantially perpendicular to a longitudinal axis of the container, a ground shielding member for shielding a surface of the container other than a housing face, a rotation mechanism for causing the container to rotate or act as a pendulum on an axis of rotation substantially perpendicular to the cross section, an opposed electrode disposed in the container so as to face the housing face, a plasma power source electrically connected to the container, a gas introducing mechanism for introducing a raw gas into the container, and an evacuation mechanism for evacuating the chamber.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: November 13, 2018
    Assignee: ADVANCED MATERIAL TECHNOLOGIES, INC.
    Inventors: Yuuji Honda, Takayuki Abe
  • Patent number: 10115887
    Abstract: An aspect of the present invention relates to ferroelectric ceramics including a stacked film formed on a Si substrate, a Pt film formed on the stacked film, a SrTiO3 film formed on the Pt film, and a PZT film formed on the SrTiO3, wherein the stacked film is formed by repeating sequentially N times a first ZrO2 film and a Y2O3 film, and a second ZrO2 film is formed on the film formed repeatedly N times, the N being an integer of 1 or more. It is preferable that a ratio of Y/(Zr+Y) of the stacked film is 30% or less.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: October 30, 2018
    Assignee: ADVANCED MATERIAL TECHNOLOGIES, INC.
    Inventors: Takeshi Kijima, Yuuji Honda, Yukinori Tani
  • Patent number: 10115888
    Abstract: A method for manufacturing a crystal film including: forming a Zr film on a substrate heated to 700° C. or more by a vapor deposition method using a vapor deposition material having a Zr single crystal; forming a ZrO2 film on said Zr film on a substrate heated to 700° C. or more, by a vapor deposition method using said vapor deposition material having a Zr single crystal, and oxygen; and forming a Y2O3 film on said ZrO2 film on a substrate heated to 700° C. or more, by a vapor deposition method using a vapor deposition material having Y, and oxygen.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: October 30, 2018
    Assignee: Advanced Material Technologies, Inc.
    Inventors: Takeshi Kijima, Yuuji Honda
  • Publication number: 20180265415
    Abstract: A method of preparation of an article having a sliding surface and comprising graphitic particles, comprises the steps of: i) impregnating open porosity in a porous body with a resin comprising graphitic particles; and ii) hardening said resin.
    Type: Application
    Filed: August 19, 2016
    Publication date: September 20, 2018
    Applicant: Morgan Advanced Materials and Technology, Inc.
    Inventors: Andrew Hosty, Andrew Goshe, Michael Murray
  • Patent number: 8906522
    Abstract: Described are hybrid articles comprising at least one hard non-oxide or oxide ceramic component of at least 95% of theoretical density directly bonded to, and different from, a hard non-oxide or oxide ceramic composite component comprising a tribology enhancing component. The at least one hard non-oxide or oxide ceramic component comprises a member of the group consisting of silicon carbide, pressureless sintered silicon carbide, liquid phase sintered silicon carbide, reaction bonded silicon carbide, tungsten carbide, aluminum oxide, and silicon nitride. The at least one hard non-oxide or oxide ceramic composite component comprises a member of the group consisting of silicon carbide, pressureless sintered silicon carbide, liquid phase sintered silicon carbide, reaction bonded silicon carbide, tungsten carbide, aluminum oxide, and silicon nitride.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: December 9, 2014
    Assignee: Morgan Advanced Materials and Technology Inc.
    Inventor: Joseph Boylan
  • Publication number: 20130143173
    Abstract: A furnace comprises a cage holding and supporting an insulation pack comprising one or more base boards, one or more top boards and a plurality of side boards each of rigid carbon fiber based insulation material, the one or more base boards, one or more top boards, and plurality of side boards defining a cavity between them. A flexible carbon felt is disposed between the side boards and the cage.
    Type: Application
    Filed: October 25, 2012
    Publication date: June 6, 2013
    Applicant: MORGAN ADVANCED MATERIALS AND TECHNOLOGY INC.
    Inventor: MORGAN ADVANCED MATERIALS AND TECHNOLOGY INC.
  • Publication number: 20120304931
    Abstract: A containment system, for instance, for containment of heat and/or chemical gases, is described, for instance, carbon-based containment systems that can include an insulation segment, a shield segment, and/or a divider segment, wherein each can be a plurality of panels, such as wall panels, that form walls.
    Type: Application
    Filed: August 15, 2012
    Publication date: December 6, 2012
    Applicant: Morgan Advanced Material and Technology, Inc.
    Inventors: Cayan BAGATUR, Steven COPPELLA, Steven GAUDREAU, Andrew GOSHE, James Alan SNIPES
  • Publication number: 20110008604
    Abstract: Embodiments of the invention include a hybrid article comprising at least one hard non-oxide or oxide ceramic component of at least 95% of theoretical density directly bonded to, and different from, a hard non-oxide or oxide ceramic composite component comprising a tribology enhancing component. The at least one hard non-oxide or oxide ceramic component comprises a member of the group consisting of silicon carbide, pressureless sintered silicon carbide, liquid phase sintered silicon carbide, reaction bonded silicon carbide, tungsten carbide, aluminum oxide, and silicon nitride. The at least one hard non-oxide or oxide ceramic composite component comprises a member of the group consisting of silicon carbide, pressureless sintered silicon carbide, liquid phase sintered silicon carbide, reaction bonded silicon carbide, tungsten carbide, aluminum oxide, and silicon nitride.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 13, 2011
    Applicant: MORGAN ADVANCED MATERIALS AND TECHNOLOGY INC.
    Inventor: Joseph Boylan
  • Publication number: 20090297853
    Abstract: A process for preparing nanoparticle coated surfaces including the steps of electrostatically coating surfaces with polyelectrolyte by exposing the surface to a solution or suspension of polyelectrolyte, removing excess non-bound polyelectrolyte, then further coating the particles with a multi-layer of charged nanoparticles by exposing the polyelectrolyte-coated surface to a fluid dispersion including the charged nanoparticles. The process steps can optionally be repeated thereby adding further layers of polyelectrolyte followed by nanoparticles as many times as desired to produce a second and subsequent layers. The polyelectrolyte has an opposite surface charge to the charged nanoparticles and a molecular weight at the ionic strength of the fluid that is effective so that the first, second, and subsequent layers independently comprise a multiplicity of nanoparticle layers that are thicker than monolayers.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 3, 2009
    Applicant: Advanced Materials Technology, Inc.
    Inventors: Joseph J. Kirkland, Timothy J. Langlois