Patents Assigned to Advanced Materials Products, Inc.
-
Patent number: 8920712Abstract: A process including: (a) forming a powder blend by mixing titanium powders, (b) consolidating the powder blend by compacting to provide a green compact, (c) heating the green compact thereby releasing absorbed water from the titanium powder, (d) forming ?-phase titanium and releasing atomic hydrogen from the hydrogenated titanium by heating the green compact in an atmosphere of hydrogen emitted by the hydrogenated titanium, (e) reducing surface oxides on particles of the titanium powder with atomic hydrogen released by heating of the green compact, (f) diffusion-controlled chemical homogenizing of the green compact and densification of the green compact by heating followed by holding resulting in complete or partial dehydrogenation to form a cleaned and refined compact, (g) heating the cleaned and refined green compact in vacuum thereby sintering titanium to form a sintered dense compact, and (h) cooling the sintered dense compact to form a sintered near-net shaped article.Type: GrantFiled: August 8, 2011Date of Patent: December 30, 2014Assignee: Advanced Materials Products, Inc.Inventors: Orest M. Ivasishin, Dmitro G. Savvakin, Vladimir S. Moxson, Vladimir A. Duz, Mykola M. Gumenyak
-
Publication number: 20140209533Abstract: The present invention relates to design and manufacture of multilayer sintered membranes made from metals and inorganic compounds (ceramics, silicate, clay, zeolites, phosphates, etc.). The membranes are designated for separation of water. They comprise at least one layer having nanopores commensurable with the size of water molecules. The membranes comprise: (a) supporting metallic layer having pore size 1-500 microns, (b) metallic interlayer having pore size <2 micron, (c) sublayer with local regular protrusions of the interlayer into the supporting layer to increase service life of the membrane, and (d) one nanoporous ceramic or metallic top layer having pore size in the range of 1-15 angstroms. The invented design and method allow the manufacture of cost-effective multilayer membranes containing nanoporous layer with controlled pore sizes in each layer and optimal morphology of pores that provides selective transport of molecules during filtration and separation of liquids.Type: ApplicationFiled: January 26, 2013Publication date: July 31, 2014Applicant: Advance Materials Products, Inc. (ADMA Products, Inc.)Inventors: Mykhailo Matviychuk, Volodymyr A. Duz, Vladimir S. Moxson
-
Patent number: 8747515Abstract: The invention is suitable for the manufacture of flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as for sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. A fully-dense discontinuously-reinforced titanium matrix composite (TMMC) material comprises (a) a matrix of titanium or titanium alloy as a major component, (b) ceramic and/or intermetallic hard particles dispersed in the matrix in the amount of ?50 vol. %, and (c) complex carbide- and/or silicide particles at least partially soluble in the matrix at the sintering or forging temperatures such as Ti4Cr3C6, Ti3SiC2, Cr3C2, Ti3AlC2, Ti2AlC, Al4C3, Al4SiC4, Al4Si2C5, Al8SiC7, V2C, (Ti,V)C, VCr2C2, and V2Cr4C3 dispersed in the matrix in the amount of ?20 vol. %.Type: GrantFiled: December 27, 2003Date of Patent: June 10, 2014Assignee: Advance Material Products, IncInventors: Volodymyr Duz, Vladimir S. Moxson, Alexander E. Shapiro
-
Publication number: 20130315773Abstract: The invention relates to energy-saving manufacturing of purified hydrogenated titanium powders or alloying titanium hydride powders, by metallo-thermic reduction of titanium chlorides, including their hydrogenation, vacuum separation of titanium hydride sponge block from magnesium and magnesium chlorides, followed by crushing, grinding, and sintering of said block without need for hydrometallurgical treatment of the produced powders. Methods disclosed contain embodiments of processes for manufacturing high-purity powders and their use in manufacturing near-net shape titanium and titanium-alloy articles by sintering titanium hydride and alloyed titanium hydride powders produced from combined hydrogen-magnesium reduction of titanium chlorides, halides and hydrides of other metals.Type: ApplicationFiled: May 24, 2012Publication date: November 28, 2013Applicant: Advance Materials Products, Inc. (ADMA Products, Inc.)Inventors: Vladimir S. Moxson, Volodymyr A. Duz, Andrey G. Klevtsov, Viktor D. Sukhoplyuyev, Mihajlo D. Sopka, Yury V. Shuvalov, Mykhailo Matviychuk
-
Publication number: 20120058002Abstract: A process including: (a) forming a powder blend by mixing titanium powders, (b) consolidating the powder blend by compacting to provide a green compact, (c) heating the green compact thereby releasing absorbed water from the titanium powder, (d) forming ?-phase titanium and releasing atomic hydrogen from the hydrogenated titanium by heating the green compact in an atmosphere of hydrogen emitted by the hydrogenated titanium, (e) reducing surface oxides on particles of the titanium powder with atomic hydrogen released by heating of the green compact, (f) diffusion-controlled chemical homogenizing of the green compact and densification of the green compact by heating followed by holding resulting in complete or partial dehydrogenation to form a cleaned and refined compact, (g) heating the cleaned and refined green compact in vacuum thereby sintering titanium to form a sintered dense compact, and (h) cooling the sintered dense compact to form a sintered near-net shaped article.Type: ApplicationFiled: August 8, 2011Publication date: March 8, 2012Applicant: Advance Material Products, Inc.,(ADMA Products, Inc.)Inventors: Orest M. IVASISHIN, Dmitro G. SAVVAKIN, Vladimir S. MOXSON, Vladimir A. DUZ, Mykola M. GUMENYAK
-
Patent number: 7993577Abstract: The invention relates to manufacture of titanium articles from sintered powders. The cost-effective initial powder: 10-50 wt % of titanium powder having ?500 microns in particle size manufactured from underseparated titanium sponge comprising ?2 wt % of chlorine and ?2 wt % of magnesium; 10-90 wt % of a mixture of two hydrogenated powders A and B containing different amount of hydrogen; 0-90 wt % of standard grade refined titanium powder, and/or 5-50 wt % of alloying metal powders. The method includes: mixing powders, compacting the blend to density at least 60% of the theoretical density, crushing titanium hydride powders into fine fragments at pressure of 400-960 MPa, chemical cleaning and refining titanium powders by heating to 300-900° C. and holding for ?30 minutes, heating in vacuum at 1000-1350° C., holding for ?30 minutes, and cooling.Type: GrantFiled: June 11, 2007Date of Patent: August 9, 2011Assignee: Advance Materials Products, Inc.Inventors: Volodymyr A. Duz, Orest M. Ivasishin, Vladimir S. Moxson, Dmitro G. Savvakin, Vladislav V. Telin
-
Publication number: 20110171116Abstract: The invention relates to the manufacture of titanium hydride powder using continuous or semi-continuous process, and using titanium slag or synthetic rutile as raw materials, while hydrogen, titanium tetrachloride, titanium trichloride, titanium dichloride, and hydrogen chloride are participate as intermediate reaction products. The continuous comprises: (a) reduction of TiCl4 to low titanium chlorides followed by cooling a mixture, (b) separating of residual TiCl4 from solid low chlorides by heating the mixture in argon or vacuum up to 150° C. followed by removing the titanium tetrachloride from the mixture, (c) dissociation of TiCl3 to TiCl2 at 450° C. in vacuum followed by removal of gaseous titanium tetrachloride from the reaction zone, condensation to the liquid, and returning back into the reaction retort, (d) dissociation of TiCl2 in vacuum at 750-850° C. to manufacture fine powder of metallic titanium and titanium tetrachloride, whereby hydrogen heated up to 1000° C.Type: ApplicationFiled: January 11, 2010Publication date: July 14, 2011Applicant: Advance Materials Products, Inc., USAInventors: Andrey Klevtsov, Alexander Nikishin, Jury Shuvalov, Vladimir Moxson, Volodymyr Duz
-
Publication number: 20100074788Abstract: The invention is suitable for the manufacture of flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, etc. The method for manufacturing TMCC is comprised of the following steps: (a) preparing a basic powdered blend containing matrix alloy or titanium powders, dispersing ceramic and/or intermetallic powders, and powders of said complex carbide- and/or silicide particles, (b) preparing the Al—V master alloy containing ?5 wt. % of iron, (c) preparing the Al—V—Fe master alloy fine powder having a particle size of ?20 ?m, (d) mixing the basic powdered blend with the master alloy powder to obtain a chemical composition of TMCC, (e) compacting the powder mixture at room temperature, (f) sintering at the temperature which provides at least partial dissolution of dispersed powders, (g) forging at 1500-2300° F., and (h) cooling.Type: ApplicationFiled: November 19, 2009Publication date: March 25, 2010Applicant: Advance Material Products Inc.(ADMA Products, Inc.)Inventors: Vladimir S. Moxson, Volodymyr A. Duz, Alexander E. Shapiro
-
Publication number: 20070269331Abstract: The invention is suitable for the manufacture of flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as for sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. A fully-dense discontinuously-reinforced titanium matrix composite (TMMC) material comprises (a) a matrix of titanium or titanium alloy as a major component, (b) ceramic and/or intermetallic hard particles dispersed in the matrix in the amount of ?50 vol. %, and (c) complex carbide- and/or silicide particles at least partially soluble in the matrix at the sintering or forging temperatures such as Ti4Cr3C6, Ti3SiC2, Cr3C2, Ti3AlC2, Ti2AlC, Al4C3, Al4SiC4, Al4Si2C5, Al8SiC7, V2C, (Ti,V)C, VCr2C2, and V2Cr4C3 dispersed in the matrix in the amount of ?20 vol. %.Type: ApplicationFiled: December 27, 2003Publication date: November 22, 2007Applicant: Advance Materials Products, Inc. (ADMA Products, Inc.)Inventors: Vladimir Moxson, Volodymyr Duz, Alexander Shapiro
-
Publication number: 20060147333Abstract: The present invention relates to the manufacture of fully dense strips, plates, sheets, and foils of titanium alloys, titanium metal matrix composites, titanium aluminides, and flat multilayer composites of said materials manufactured by direct rolling and sintering of blended powders. The resulting titanium alloy flat products are suitable in the aerospace, automotive, sporting goods, and other industries. The process includes the following steps: (a) providing a C.P.Type: ApplicationFiled: December 30, 2004Publication date: July 6, 2006Applicant: Advance Materials Products, Inc. (ADMC Products, Inc.)Inventors: Vladimir Moxson, Volodymyr Duz
-
Publication number: 20040146736Abstract: (a) The metal matrix composite is suitable for the manufacture of flat or shaped titanium aluminide, zirconium aluminide, or niobium aluminide articles and layered metal composites having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, thin cross-section vanes and airfoils, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. The composite material consists of a metal (e.g., Ti, Zr, or Nb-based alloy) matrix at least partially intercalated with a three-dimensional skeletal metal aluminide structure, whereby ductility of the matrix metal is higher than that of the metal aluminide skeleton. The method for manufacturing includes the following steps: (a) providing an aluminum skeleton structure having open porosity of 50-95 vol.Type: ApplicationFiled: January 29, 2003Publication date: July 29, 2004Applicant: Advanced Materials Products, Inc.Inventors: Eugene Ivanov, Vladimir S. Moxson
-
Method for manufacturing fully dense metal sheets and layered composites from reactive alloy powders
Publication number: 20040096350Abstract: The method is suitable for the manufacture of flat or shaped titanium aluminide articles and layered metal matrix composites such as lightweight plates and sheets for aircraft and automotive applications, thin cross-section vanes and blades, composite electrodes, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as for sporting goods such as helmets, golf clubs, sole plates, crown plates, etc.Type: ApplicationFiled: November 18, 2002Publication date: May 20, 2004Applicant: Advanced Materials Products, Inc.Inventors: Vladimir S. Moxson, Eugene Ivanov -
Publication number: 20030211001Abstract: The process includes (a) mixing a titanium hydride powder having a particle size of ≦150 &mgr;m with alloying metal powders (master alloys or elemental metal powders) having a particle size in the range of {fraction (1/15)}-⅖ of the maximal particle size of titanium hydride powder, (b) compacting the resulting powder mixture by molding at the pressures of 400-1000 MPa, (c) heating up to the sintering temperature of the predetermined alloy composition at variable pressures in a furnace chamber: initial heating to 400° C. in vacuum of less than 10−2 Pa, then, heating to a temperature range of 400-900° C. with the pressures up to 104 Pa, which is controlled by hydrogen being emitted by the decomposition of titanium hydride contained in the compacted powdered alloy, and finally, heating to over 900° C. to the sintering temperature at the pressure continually decreasing to the starting vacuum level, and (d) sintering.Type: ApplicationFiled: May 13, 2002Publication date: November 13, 2003Applicant: Advanced Materials Products, Inc.Inventors: Orest M. Ivasishin, Dmitro G. Savvakin, Victor A. Drozdenko, Anatoli M. Petrunko, Vladimir S. Moxson, Francis H. Froes
-
Publication number: 20030161750Abstract: The lightweight bulletproof metal matrix macrocomposites (MMMC) contain (a) 10-99 vol. % of permeable skeleton structure of titanium, titanium aluminide, Ti-based alloys, and/or mixtures thereof infiltrated with low-melting metal selected from Al, Mg, or their alloys, and (b) 1-90 vol. % of ceramic and/or metal inserts positioned within said skeleton, whereby a normal projection area of each of said inserts is equal to or larger than the cross-section area of a bullet or a projectile body. The MMMC are manufactured as flat or solid-shaped, double-layer, or multi-layer articles containing the same inserts or different inserts in each layer, whereby insert projections of each layer cover spaces between inserts of the underlying layer. The infiltrated metal contains 1-70 wt. % of Al and Mg in the balance, optionally, alloyed with Ti, Si, Zr, Nb, V, as well as with 0-3 wt. % of TiB2, SiC, or Si3N4 sub-micron powders, to promote infiltrating and wetting by Al-containing alloys.Type: ApplicationFiled: February 28, 2002Publication date: August 28, 2003Applicant: Advanced Materials Products, Inc.Inventors: Vladimir S. Moxson, Eugene Ivanov
-
Publication number: 20030133821Abstract: Lightweight metal matrix composites containing a skeleton structure of titanium, titanium aluminide, or Ti-based alloy are manufactured by low temperature infiltration with molten Mg-based alloy or Mg—Al alloy at 450-750° C., with molten In, Pb, or Sn at 300-450° C., or with molten Ag and Cu at 900-1100° C. The skeleton structure with a density of 25-35% is produced by loose sintering of Ti or Ti-based alloy powders. A primary deformation of the Ti skeleton structure before the infiltration is carried out by cold or hot rolling or forging to obtain a porous flat or shaped preform with a porosity <50% and pores drawn out in one direction such as the direction of future rolling of the composite plate.Type: ApplicationFiled: January 16, 2002Publication date: July 17, 2003Applicant: Advanced Materials Products, Inc.Inventors: Vladimir S. Moxson, Eugene Ivanov
-
Patent number: 5903813Abstract: A flat section with density not less than 25% from theoretical value is sintered from the powder of low ductile reactive alloy, welded by diffusion welding with cover foils made from ductile reactive metal that seal hermetically inner and surface pores, and assembled with two heat resistant sheets in the laminated package. Cover foils are made from metal that belongs to the same metal system as said sintered powder. The package is encapsulated in a capsule made from reactive alloy that belongs also to the same metal system as said sintered powder. An anti-adhesive release agent such as Y.sub.2 O.sub.3, A1.sub.2 O.sub.3, or CaF.sub.2 is deposited on both sides of the laminated package and between cover foils and heat resistant sheets. A portion of metal powder such as Mn, Ti, Nb, Cr, or other metals, having a high affinity to oxygen, inserts into said capsule for absorbtion of oxygen during the heating and forming. After outgassing vacuum heating at 1100-1500.degree. F.Type: GrantFiled: July 24, 1998Date of Patent: May 11, 1999Assignee: Advanced Materials Products, Inc.Inventors: Vladimir S. Moxson, Aleksandr E. Shapiro