Patents Assigned to Advanced Materials Technologies PTE, Ltd.
  • Patent number: 7347968
    Abstract: The invention shows how powder injection molding may be used to form a continuous body having multiple parts, each of which has different functional properties such as corrosion resistance or hardness, there being no connective materials such as solder or glue between the parts. This is accomplished through careful control of the relative shrinkage rates of these various parts. Although there is no limit to how many parts with different functional properties can make up an object, special attention is paid to certain pairs of functional properties that are difficult and/or expensive to combine in a single object when other manufacturing means are used.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: March 25, 2008
    Assignee: Advanced Materials Technology Pte. Ltd.
    Inventors: Kay Leong Lim, Lye-King Tan, Eng-Seng Tan, Robin Baumgartner
  • Patent number: 6935022
    Abstract: Heat dissipation during the operation of integrated circuit chips is an old problem that continues to get worse. The present invention significantly ameliorates this by placing an embedded heat pipe directly beneath the chip. Using powder injection molding, the lower portion of the package is formed first as an initial green part which includes one or more cavities. The latter are then lined with a feedstock that is designed to produce a porous material after sintering, at which time a working fluid is introduced into the porous cavities and sealed, thereby forming one or more heat pipes located directly below the chip. The latter is then sealed inside an enclosure. During operation, heat generated by the chip is efficiently transferred to points outside the enclosure. A process for manufacturing the structure is also described.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: August 30, 2005
    Assignee: Advanced Materials Technologies PTE, Ltd.
    Inventors: Randall M. German, Lye-King Tan, John Johnson
  • Patent number: 6776955
    Abstract: This invention describes a novel production method of manufacturing metal/ceramic articles with complex internal undercut features using powder injection molding processes The shape of the undercut/hollow feature is initially molded using a disposable material such as a degradable polymer. The PIM feedstock is then molded onto this to form the required shape geometry, in effect encapsulating the polymeric feature in the PIM feedstock. The resulting two-material part is then sent for processing which removes the polymer through solvent or thermal process. After the polymer and the binder have been removed, the part now comprises a powder skeleton that contains the internal undercut feature within itself. After sintering the result is a metal/ceramic part having an internal undercut feature. The technical advantage of the present invention is that it does not require complex toolings or costly secondary operations while retaining the flexibility to design any internal undercut features of complex geometry.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: August 17, 2004
    Assignee: Advanced Materials Technologies, Pte., Ltd.
    Inventors: Kay-Leong Lim, Lye-King Tan, Eng-Seng Tan
  • Patent number: 6761852
    Abstract: Although MIM (metal injection molding) has received widespread application, aluminum has not been widely used for MIM in the prior art because of the tough oxide layer that grows on aluminum particles, thus preventing metal—metal bonding between the particles. The present invention solves this problem by adding a small amount of material that forms a eutectic mixture with aluminum oxide, and therefore aids sintering, to reduce the oxide, thereby allowing intimate contact between aluminum surfaces. The process includes the ability to mold and then sinter the feedstock into the form of compacted items of intricate shapes, small sizes (if needed), and densities of about 95% of bulk.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: July 13, 2004
    Assignee: Advanced Materials Technologies Pte. Ltd.
    Inventors: Chee-Tian Yeo, Lye-King Tan
  • Publication number: 20040086414
    Abstract: The invention shows how powder injection molding may be used to form a continuous body having multiple parts, each of which has different functional properties such as corrosion resistance or hardness, there being no connective materials such as solder or glue between the parts. This is accomplished through careful control of the relative shrinkage rates of these various parts. Although there is no limit to how many parts with different functional properties can make up an object, special attention is paid to certain pairs of functional properties that are difficult and/or expensive to combine in a single object when other manufacturing means are used.
    Type: Application
    Filed: October 1, 2003
    Publication date: May 6, 2004
    Applicant: ADVANCED MATERIALS TECHNOLOGY PTE. LTD.
    Inventors: Kay Leong Lim, Lye-King Tan, Eng-Seng Tan, Robin Baumgartner
  • Publication number: 20040071581
    Abstract: The invention shows how powder injection molding may be used to form a continuous body having multiple parts, each of which has different functional properties such as corrosion resistance or hardness, there being no connective materials such as solder or glue between the parts. This is accomplished through careful control of the relative shrinkage rates of these various parts. Although there is no limit to how many parts with different functional properties can make up an object, special attention is paid to certain pairs of functional properties that are difficult and/or expensive to combine in a single object when other manufacturing means are used.
    Type: Application
    Filed: October 1, 2003
    Publication date: April 15, 2004
    Applicant: ADVANCED MATERIALS TECHNOLOGY PTE. LTD.
    Inventors: Kay Leong Lim, Lye-King Tan, Eng-Seng Tan, Robin Baumgartner
  • Patent number: 6664663
    Abstract: An interlocking assembly of a voice coil motor for a hard disk drive having an arcuate shaped hollow structure formed by metal injection molding. The hollow structure has a bottom plate member that is separated from a top plate member by a pair of upright members disposed therebetween. The upright members joined with the inside surfaces of the plate members. The uprights are disposed at each end of the hollow structure. A tapered recess is formed in the top surface of the bottom plate, the recess ingress's from a convex edge of the bottom plate and narrows while extending through to an opposite concave edge, the tapered recess has side edges shaped to tightly interlock with a flat arcuate shaped permanent magnet having dovetail side edges to slidely interlock with the tapered recess of the bottom plate of the hollow structure, thus eliminating the need for adhesive fastening.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: December 16, 2003
    Assignee: Advanced Materials Technologies Pte. Ltd.
    Inventor: Chee Tian Yeo
  • Patent number: 6660225
    Abstract: The invention shows how powder injection molding may be used to form a continuous body having multiple parts, each of which has different functional properties such as corrosion resistance or hardness, there being no connective materials such as solder or glue between the parts. This is accomplished through careful control of the relative shrinkage rates of these various parts. Although there is no limit to how many parts with different functional properties can make up an object, special attention is paid to certain pairs of functional properties that are difficult and/or expensive to combine in a single object when other manufacturing means are used.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: December 9, 2003
    Assignee: Advanced Materials Technologies Pte, Ltd.
    Inventors: Kay Leong Lim, Lye-King Tan, Eng-Seng Tan, Robin Baumgartner
  • Publication number: 20030170137
    Abstract: Although MIM (metal injection molding) has received widespread application, aluminum has not been widely used for MIM in the prior art because of the tough oxide layer that grows on aluminum particles, thus preventing metal-metal bonding between the particles. The present invention solves this problem by adding a small amount of material that forms a eutectic mixture with aluminum oxide, and therefore aids sintering, to reduce the oxide, thereby allowing intimate contact between aluminum surfaces. The process includes the ability to mold and then sinter the feedstock into the form of compacted items of intricate shapes, small sizes (if needed), and densities of about 95% of bulk.
    Type: Application
    Filed: March 11, 2002
    Publication date: September 11, 2003
    Applicant: Advanced Materials Technologies Pte Ltd.
    Inventors: Chee-Tian Yeo, Lye-King Tan
  • Patent number: 6569380
    Abstract: A method to form a combined enclosure and heat sink structure for a semiconductor device is achieved. A first feedstock comprising a first mixture of powdered metal materials, lubricants, and binders is prepared. A second feedstock comprising a second mixture of powdered metal materials, lubricants, and binders is prepared such that the difference between the sintering shrinkage of each of the first and second feedstocks is less than 1%. The first and second feedstocks are pressed to form a first green part having an enclosure shape and a second green part having a heat sink shape. The lubricants and the binders from said first and second green parts are removed to form a first powdered skeleton and a second powdered skeleton. The first and second powdered skeletons are sintered to complete the combined enclosure and heat sink structure. The first and second powdered skeletons are in intimate contact during the sintering.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: May 27, 2003
    Assignee: Advanced Materials Technologies Pte, Ltd.
    Inventors: Kay-Leong Lim, Lye-King Tan, Eng-Seng Tan
  • Publication number: 20030042006
    Abstract: Heat dissipation during the operation of integrated circuit chips is an old problem that continues to get worse. The present invention significantly ameliorates this by placing an embedded heat pipe directly beneath the chip. Using powder injection molding, the lower portion of the package is formed first as an initial green part which includes one or more cavities. The latter are then lined with a feedstock that is designed to produce a porous material after sintering, at which time a working fluid is introduced into the porous cavities and sealed, thereby forming one or more heat pipes located directly below the chip. The latter is then sealed inside an enclosure. During operation, heat generated by the chip is efficiently transferred to points outside the enclosure. A process for manufacturing the structure is also described.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 6, 2003
    Applicant: Advanced Materials Technologies Pte. Ltd.
    Inventors: Randall M. German, Lye-King Tan, John Johnson
  • Publication number: 20030039571
    Abstract: A method to form a combined enclosure and heat sink structure for a semiconductor device is achieved. A first feedstock comprising a first mixture of powdered metal materials, lubricants, and binders is prepared. A second feedstock comprising a second mixture of powdered metal materials, lubricants, and binders is prepared such that the difference between the sintering shrinkage of each of the first and second feedstocks is less than 1%. The first and second feedstocks are pressed to form a first green part having an enclosure shape and a second green part having a heat sink shape. The lubricants and the binders from said first and second green parts are removed to form a first powdered skeleton and a second powdered skeleton. The first and second powdered skeletons are sintered to complete the combined enclosure and heat sink structure. The first and second powdered skeletons are in intimate contact during the sintering.
    Type: Application
    Filed: August 27, 2001
    Publication date: February 27, 2003
    Applicant: Advanced Materials Technologies Pte., Ltd.
    Inventors: Kay-Leong Lim, Lye-King Tan, Eng-Seng Tan
  • Patent number: 6461563
    Abstract: The invention shows how powder injection molding may be used to form a continuous body having multiple parts, each of which has different physical properties such as magnetic characteristics or hardness. This is accomplished through careful control of the relative shrinkage rates of these various parts. Additionally, care is taken to ensure that only certain selected physical properties are allowed to differ between the parts while others may be altered through relatively small changes in the composition of the feedstocks used. An additional application of the present invention is a process for forming, in a single integrated operation, an object that is contained within an enclosure while not being attached to said enclosure. This is accomplished by causing the shrinkage rate of the object to be substantially greater than that of the enclosure. As a result, after sintering, the object is found to have detached itself from the enclosure and is free to move around therein.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: October 8, 2002
    Assignee: Advanced Materials Technologies Pte. Ltd.
    Inventors: Kay-Leong Lim, Lye-King Tan, Eng-Seng Tan, Robin Baumgartner
  • Publication number: 20020071781
    Abstract: The invention shows how powder injection molding may be used to form a continuous body having multiple parts, each of which has different functional properties such as corrosion resistance or hardness, there being no connective materials such as solder or glue between the parts. This is accomplished through careful control of the relative shrinkage rates of these various parts. Although there is no limit to how many parts with different functional properties can make up an object, special attention is paid to certain pairs of functional properties that are difficult and/or expensive to combine in a single object when other manufacturing means are used.
    Type: Application
    Filed: September 24, 2001
    Publication date: June 13, 2002
    Applicant: Advanced Materials Technologies Pte., Ltd
    Inventors: Kay Leong Lim, Lye-King Tan, Eng-Seng Tan, Robin Baumgartner
  • Patent number: 6045601
    Abstract: A high density, non-magnetic alloy is described along with a process for manufacturing it. The preferred composition for the alloy is approximately 95% by weight of tungsten and 5% of austenitic stainless steel. The process for manufacturing the alloy begins with blending tungsten and stainless steel powders which are then mixed with an organic binder to form a feedstock. The latter is then molded into the form of compacted items, such as a hard drive counterweight balance, and then sintered in either vacuum or a hydrogen atmosphere. The tungsten heavy alloys of the present invention can be easily manufactured in large volume economically in many intricate shapes with excellent control of weight and dimensions.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: April 4, 2000
    Assignee: Advanced Materials Technologies, Pte, Ltd.
    Inventor: Lye King Tan
  • Patent number: 5415830
    Abstract: The disclosure relates to a binder, and the method of formulating the said binder, which is suitable for shaping parts from metallic and/or ceramic particles by injection molding. The binder comprises materials that are mainly thermoplastics, each of which having a percentage that is determined by its thermogravimetric analysis (TGA) profile and a weight loss versus highest binder removal rate from a green body by progressive heating. The removal of this binder from the green body is performed within a much shorter period of time than those published in the prior art. An example binder comprises 40-70% HDPE, 18-30% Paraffin wax, 10-25% microcrystalline wax and 2-5% stearic acid. Another binder comprises 35-65% PP, 23-35% paraffin wax, 10-25% microcrystaline wax and 2-5% stearic acid.
    Type: Grant
    Filed: October 14, 1993
    Date of Patent: May 16, 1995
    Assignee: Advanced Materials Technologies Pte Ltd
    Inventors: Jian G. Zhang, Dunstan H. Peiris, Jun W. Zhao, Sow W. Loh
  • Patent number: 5401462
    Abstract: The disclosure relates to a binder, and the method of formulating the said binder, which is suitable for shaping parts from metallic and/or ceramic particles by injection molding. The binder comprises materials that are mainly thermoplastics, each of which having a percentage that is determined by its thermogravimetric analysis (TGA) profile and a weight loss versus highest binder removal rate from a green body by progressive heating. The removal of this binder from the green body is performed within a much shorter period of time than those published in the prior art. An example binder comprises 40-70% HDPE, 18-30% Paraffin wax, 10-25% microcrystalline wax and 2-5% stearic acid. Another binder comprises 35-65% PP, 23-35% paraffin wax, 10-25% microcrystaline wax and 2-5% stearic acid.
    Type: Grant
    Filed: October 14, 1993
    Date of Patent: March 28, 1995
    Assignee: Advanced Materials Technologies Pte Ltd
    Inventors: Jian G. Zhang, Dunstan H. Peiris
  • Patent number: 5332543
    Abstract: The disclosure relates to a binder, and the method of formulating the said binder, which is suitable for shaping parts from metallic and/or ceramic particles by injection molding. The binder comprises materials that are mainly thermoplastics, each of which having a percentage that is determined by its thermogravimetric analysis (TGA) profile and a weight loss versus temperature profile that is designed for the binder to allow highest binder removal rate from a green body by progressive heating. The removal of this binder from the green body is performed within a much shorter period of time than those published in the prior art. An example binder comprises 40-70% HDPE, 18-30% Paraffin wax, 10-25% microcrystalline wax and 2-5% stearic acid. Another binder comprises 35-65% PP, 23-35% paraffin wax, 10-25% microcrystaline wax and 2-5% stearic acid.
    Type: Grant
    Filed: August 26, 1992
    Date of Patent: July 26, 1994
    Assignee: Advanced Materials Technologies Pte Ltd
    Inventors: Jian G. Zhang, Dunstan H. Peiris, Jun W. Zhao, Sow W. Loh