Abstract: Quantitative assessment of haemodynamics by cycled arterial spin labeling (CACL) that distinguishes between blood magnetization tagged by a specific labeling pulse, using a time series acquisition in which all measured data sets are used for reconstruction of each single time step, thereby reducing measurement time while maintaining signal-to-noise ration compared to conventional ASL.
Abstract: Regional arterial spin labeling (regASL) speeds up acquisition without sacrificing the signal-to-noise ratio (SNR) of the resulting perfusion images by using the same control image (i.e. acquired without labeling of blood in a vessel) for two or more vascular territory measurements. This regional ASL is accomplished by creating prepared spin magnetization (e.g. inverted or saturated) in a specific blood vessel, instead of preparing spin magnetization in all feeding blood vessels. As in conventional ASL, two data sets are typically acquired in a downstream position: one with (label image) and one without preparation (control image) in one particular vessel.
Abstract: A method of detecting Parkinson's disease through MRI of substantial nigra pars compacta (SNc) tissue. The method involves obtaining a gray matter suppressed (GMS) MRI signal from the SNc tissue, obtaining a white matter suppressed (WMS) MRI signal of the SNc tissue, and combining information from the GMS and WMS MRI signals to produce resultant signals indicative of Parkinson's disease. A similar method can be used to detect Progressive Supranuclear Palsy. A method of distinguishing between the two diseases involves obtaining at least two starting MRI images of SNc tissue using different MRI parameters, and combining the starting images to compute resultant signals differentiating between the two forms of parkinsonism.
Abstract: MR imaging produces a projection image showing better image contrast between small blood vessels and background than traditional net intensity projection (NIP) images but more visual clues to vessel depth than traditional maximum intensity projection (MIP) images.
Type:
Grant
Filed:
May 22, 2002
Date of Patent:
March 28, 2006
Assignee:
Advanced MRI Technologies, LLC
Inventors:
Koichi Oshio, David A. Feinberg, Matthias Guenther
Abstract: MRI method and apparatus using simultaneous image refocusing of multiple MRI slices that have different phase histories imparted by applying different amount of additional energy to the different slices before the first refocusing, in combination with applying novel fid spoiling that suppresses interference between stimulated echoes and spin echoes of different slices while allowing non-interfering stimulated echoes to be added to the appropriate primary echoes.