Abstract: In one embodiment, a method electrically stimulates an area in a spinal disc. The method comprises: implanting at least one steerable lead at a placement site for stimulating a spinal disc such that the lead is disposed exterior and immediately adjacent to and circumferentially along an annulus of the spinal disc, the at least one lead including a plurality of electrodes distributed along a majority of a circumference of the annulus; connecting the lead to a signal generator; and generating electrical stimulation pulses using the generator to stimulate targeted portions of the spinal disc, wherein the stimulation of the targeted portion of the spinal disc sufficiently stimulates nerve tissue within the spinal disc to prevent communication of pain signals originating in the spinal disc without damaging tissue of the spinal disc.
Type:
Grant
Filed:
June 26, 2006
Date of Patent:
November 9, 2010
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Philip M. Finch, Scott F. Drees, John Erickson
Abstract: A tissue modulation device, for treating at least one of obesity, metabolic syndrome, and Type 2 diabetes in a patient, is described. In some embodiments, the device includes a storage module having computer-readable instructions for delivering an electrical stimulation pattern to a splanchnic nerve of the patient. The stimulation pattern includes at least one on-time. The on-time includes at least one of a suprathreshold period and a subthreshold period. The splanchnic nerve is selected from the group consisting of the greater splanchnic nerve, the lesser splanchnic nerve, and the least splanchnic nerve. The pattern is effective to ameliorate at least one attendant condition of obesity, metabolic syndrome, and Type 2 diabetes in the patient. The attendant condition includes dyslipidemia, hypertension, hyperinsulinemia, hyperglycemia, and/or insulin resistance.
Abstract: A wireless communication method and protocol, and wireless devices and systems for stimulation, are provided for communication between a wireless device and a charging device. During active wireless charging, communications (data transmission) from the wireless device to the charging device occurs via pulse loading the receive antenna of the receiving device. Because switching regulation in the receiving device may interfere with the communications, the switching regulation is disabled during a communications window. To further reduce the likelihood of misinterpretation of signals detected in the charging device resulting from the switching regulation or noise, the data bit rate of the pulse loading communications is maintained higher than the switching regulation frequency.
Type:
Grant
Filed:
March 20, 2007
Date of Patent:
August 24, 2010
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Gregory R Martin, Gregg Turi, Marc Shanko, Rami Elghandour, Thomas Palma, William L Winstrom
Abstract: In one embodiment, a method of manufacturing a biological electrical stimulus cable assembly, comprises: providing a cable portion including a plurality of first conductive wires; removing a first portion of the insulative material from a surface along the length of the insulative material at a first location to expose only one of the first conductive wires; electrically connecting a second conductive wire to the first exposed wire surface; wrapping the second conductive wire about the cable portion a plurality of times around the cable portion such that the second conductive wire forms a substantially continuous band; electrically connecting a second end of the second conductive wire to a conductive surface; and providing an electrode over the band formed by the second conductive wire, wherein the band formed by the second conductive wire extends along at least a majority of the length of the electrode.
Type:
Grant
Filed:
June 22, 2007
Date of Patent:
August 3, 2010
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Jerome J. Boogaard, Robert W. Lucas, John W. Swanson, Sergey N. Varivoda
Abstract: In one embodiment, an apparatus comprises: a base structure adapted to be inserted within the burr hole; a lead securing member for securing the lead, the lead securing member comprising a first arm structure and a second arm structure, at least one spring loaded structure adapted to exert a force to bring the first arm structure and the second arm structure together; and a positioning tool having a distal end adapted to be inserted within the lead securing member. When the positioning tool is positioned within the lead securing member, the distal end holds the first and second arm structures a sufficient distance apart to receive a lead between the first and second arm structures; wherein the positioning tool comprises a control structure at a proximal end that, when engaged, causes the distal end of the positioning tool to be released from between the first and second arm structures.
Abstract: The following disclosure is drawn to methods of electrically stimulating areas of the brain in which neuroplasticity are occurring. The stimulation site may be different than the region in the brain where neural activity is typically present to perform the particular neural function according to the functional organization of the brain. The disclosure provides methods of identify the location in which neuroplasticity is occurring, not occurring or expected to occur.
Type:
Grant
Filed:
September 27, 2002
Date of Patent:
July 13, 2010
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
W. Douglas Sheffield, Andrew D. Firlik, Katrina S. Firlik
Abstract: In one embodiment, an implantable pulse generator comprises: pulse generating circuitry for generating pulses and delivering the pulses to outputs of the implantable pulse generator; a controller; wherein the pulse generating circuitry comprises a voltage multiplier for multiplying a battery voltage, the voltage multiplier including multiple outputs, wherein a first output of the multiple outputs provides a voltage that is programmably selectable from a plurality of voltages including non-integer multiples of the battery voltage, wherein a second output of the multiple outputs provides a voltage that is a fixed multiple of the battery voltage; wherein the controller controls the pulse generator circuitry to generate a first pulse for stimulation of the patient using a first output of the multiple outputs and controls the pulse generator circuitry to generate a second pulse to discharge output capacitors of residual charge from the first pulse using a second output of the multiple outputs.
Type:
Grant
Filed:
January 5, 2007
Date of Patent:
July 6, 2010
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Anthony J. Varrichio, Benjamin A. Tranchina
Abstract: The method described herein relates to using electrical and/or chemical stimulation to treat depression or anxiety related disorders, such as obsessive compulsive disorder. More specifically, the inferior thalamic peduncle or reticular thalamic nucleus is stimulated to treat depression or anxiety related disorders.
Type:
Grant
Filed:
November 9, 2007
Date of Patent:
June 29, 2010
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Francisco Velasco, Fiacro Jimenez, Marcos Velasco, Andres M Lozano
Abstract: Methods and systems for treating movement disorders are disclosed. A method in accordance with one embodiment can include determining that the movement disorder affects the patient's gait, oral functioning, and/or other functioning, and applying electrical stimulation proximate to the interhemispheric fissure, the Sylvian fissure, or between the two fissures, respectively. In another embodiment, the method can include selecting at least one neural process from among a plurality of processes sequentially carried out by a patient to cause a muscle movement in the patient (e.g., a planning process, an initiation process, and an execution process), and applying electrical stimulation to a location of the patient's brain associated with the at least one neural process.
Abstract: In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
Type:
Grant
Filed:
February 21, 2006
Date of Patent:
June 15, 2010
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Thomas K. Hickman, Erik D. Engstrom, Matthew J. Brock, John H. Erickson
Abstract: In one embodiment, an implantable lead for electrical stimulation of a patient, comprises: a bidirection frequency dependent current limiter (BFDCL) circuit that limits a magnitude of current that can flow through the at least one conductor from the at least one terminal to the at least one electrode, wherein the BFDCL circuit comprises: a passive frequency dependent network element; first and second semiconductors that each comprise source, drain, and reference terminals, wherein the source terminals of the first and second semiconductors are coupled to respective ends of the passive frequency dependent network element, the source terminal of the first semiconductor is coupled to the gate terminal of the second semiconductor, and the source terminal of the second semiconductor is coupled to the gate terminal of the first semiconductor.
Abstract: The present application relates to a new stimulation design which can be utilized to treat neurological conditions. The stimulation system produces a burst mode stimulation which alters the neuronal activity of the predetermined site, thereby treating the neurological condition or disorder. The burst stimulus comprises a plurality of groups of spike pulses having a maximum inter-spike interval of 100 milliseconds. The burst stimulus is separated by a substantially quiescent period of time between the plurality of groups of spike pulses. This inter-group interval may comprise a minimum of 5 seconds.
Abstract: According to one aspect, a stimulation system is provided for electrically stimulating a predetermined site to treat a neurological condition. The system includes an electrical stimulation lead adapted for implantation into a subcutaneous area in communication with a predetermined site, wherein the site is neuronal tissue that is associated with C2/C3 dermatome area, or stimulating cervical nerve roots and/or stimulating cranial nerves and/or stimulating any area associated with the occipital area. The stimulation lead includes one or more stimulation electrodes adapted to be positioned in the predetermined site. The system also includes a stimulation source that generates the stimulation pulses for transmission to the one or more stimulation electrodes of the stimulation lead to deliver the stimulation pulses to the predetermined site to treat a neurological disorder or condition.
Type:
Grant
Filed:
July 26, 2005
Date of Patent:
May 4, 2010
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Mark Thimineur, Ed Kravitz, Peter Lando, Tracy Cameron, Rohan Hoare
Abstract: A wire wrapping device that includes a turntable assembly that is made up of a turntable and a driver adapted to rotate the turntable. Also, a set of payout carriers are mounted on the turntable, each payout carrier adapted to let out wire to be wrapped. A driver is adapted to turn each payout carrier relative to the turn table, the driver being user adjustable to turn each payout carrier by a selectable amount, per each complete rotation of the turntable.
Type:
Grant
Filed:
October 10, 2007
Date of Patent:
April 20, 2010
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Don Dye, John W Swanson, Jerome J Boogaard, Dave Locke
Abstract: Systems and methods for neural stimulation may include a stimulus unit; a first electrode assembly having a first set of contacts; and a second set of contacts. The stimulus unit can be an implantable pulse generator including a first terminal that can be biased at a first signal polarity and a second terminal that can be biased at a second signal polarity. The first electrode assembly includes a support member configured to be placed at the stimulation site, the first set of contacts carried by the support member, and a first lead configured to be attached to the first terminal of the implantable pulse generator for biasing the surface contacts at the first polarity. The second set of contacts is detached from the surface electrode assembly. The second set of contacts can be one or more conductive elements fixed to or forming portions of the implantable pulse generator, or a separate electrode array.
Abstract: A system and/or method treating for a neurological disorder by brain region stimulation. The system and/or method comprises a probe and a device to provide stimulation. The probe has a stimulation portion implanted in communication with a predetermined brain region site. The stimulation portion of the probe may be implanted in contact with a predetermined brain region.
Abstract: A database methodology that concerns the mapping of any arbitrary object into a plurality of regions, enabling the assignment of multiple region-specific attributes thereto and facilitating the concurrent, graphical presentation of any assigned attributes. Attribute storage, manipulation, and presentation are driven by the individual regions and characteristics of the object.
Abstract: Methods and apparatus for treating an impaired neural function in a brain of a patient. In one embodiment, a method for treating a neural function in a brain of a patient includes determining a therapy period during which a plurality of therapy sessions are to be performed to recover functional ability corresponding to the neural function. The method continues by identifying a stimulation site in or on the brain of the patient associated with the neural function, and positioning an electrode at least proximate to the identified stimulation site. The patient is then treated by providing electrical stimulation treatments to the stimulation site. The treatment can comprise delivering electrical stimulation signals to the electrode during the therapy sessions. After expiration of the therapy period, the method includes preventing electrical stimulation signals from being delivered to the stimulation site.
Type:
Grant
Filed:
June 24, 2003
Date of Patent:
March 2, 2010
Assignee:
Advanced Neuromodulation Systems, Inc.
Inventors:
Andrew D. Firlik, Jeffrey Balzer, Bradford Evan Gliner, Alan J. Levy
Abstract: The present application involves a method and a system for using electrical stimulation and/or chemical stimulation to treat depression. More particularly, the method comprises surgically implanting an electrical stimulation lead and/or catheter that is in communication with a predetermined site which is coupled to a signal generator and/or infusion pump that release either an electrical signal and/or a pharmaceutical resulting in stimulation of the predetermined site thereby treating the mood and/or anxiety.