Patents Assigned to Advanced Refining Technologies, LLC
  • Patent number: 9415384
    Abstract: Improved catalyst supports, supported catalyst, and method of preparing and using the catalysts for the hydrodesulfurization of a residuum hydrocarbon feedstock are disclosed. The catalyst supports comprise titania alumina having 5 wt % or less titania and have greater than 70% of their pore volume in pores having a diameter between 70 and 130 and less than 2% in pores having a diameter above 1000. Catalysts prepared from the supports contain Groups 6, 9 and 10 metals or metal compounds, and optionally phosphorus, supported on the titania alumina supports. Catalysts in accordance with the invention exhibit improved sulfur and MCR conversion in hydrotreating processes.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: August 16, 2016
    Assignee: Advanced Refining Technologies LLC
    Inventors: Rong He, Stanislaw Plecha, Meenakshi S. Krishnamoorthy, Bharat M. Patel
  • Patent number: 9248438
    Abstract: A chelated hydroprocessing catalyst exhibiting low moisture is obtained by heating an impregnated, calcined carrier to a temperature higher than 200° C. and less than a temperature and for a period of time that would cause substantial decomposition of the chelating agent.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: February 2, 2016
    Assignee: Advanced Refining Technologies LLC
    Inventors: Cecelia A. Radlowski, Gill M. Malick, Colleen T. Miedona
  • Publication number: 20160017240
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise alumina and 5 wt % or less titania. Catalyst prepared from the supports have at least 30 to 80 volume percent of its pore volume in pores having a diameter of between 200 and 500 angstroms. Catalysts in accordance with the invention exhibit improved catalytic activity and stability to remove metals from heavy feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion.
    Type: Application
    Filed: February 14, 2013
    Publication date: January 21, 2016
    Applicant: ADVANCED REFINING TECHNOLOGIES LLC
    Inventors: Viorel D. Duma, Matthew P. Woods
  • Patent number: 9216407
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 22, 2015
    Assignee: Advanced Refining Technologies LLC
    Inventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
  • Publication number: 20150144532
    Abstract: Improved catalyst supports, supported catalyst, and method of preparing and using the catalysts for the hydrodesulfurization of a residuum hydrocarbon feedstock are disclosed. The catalyst supports comprise titania alumina having 5 wt % or less titania and have greater than 70% of their pore volume in pores having a diameter between 70 and 130 and less than 2% in pores having a diameter above 1000. Catalysts prepared from the supports contain Groups 6, 9 and 10 metals or metal compounds, and optionally phosphorus, supported on the titania alumina supports. Catalysts in accordance with the invention exhibit improved sulfur and MCR conversion in hydrotreating processes.
    Type: Application
    Filed: June 20, 2013
    Publication date: May 28, 2015
    Applicant: Advanced Refining Technologies LLC
    Inventors: Rong He, Stanislaw Plecha, Meenakshi S. Krishnamoorthy, Bharat M. Patel
  • Patent number: 8969242
    Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks, the catalyst comprising a metal from Group 6, a metal from Group 8, and optionally phosphorous, wherein the carrier or support, comprises porous alumina comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (A); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 to less than about 1000 A; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 A.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 3, 2015
    Assignee: Advanced Refining Technologies LLC
    Inventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
  • Publication number: 20140367311
    Abstract: Alumina support compositions comprising at least 0.1 wt % of silica are disclosed. The alumina support are characterized by a pore volume of greater than 0.60 cc/g, a median pore size ranging from about 70 to about 120, a pore size distribution such that at least 90% of the total pore volume falls within the range of about 20 to about 250, and a pore size distribution width of no less than about 40. Alumina compositions of the present invention exhibit a primary peak mode at a pore diameter less than the median pore diameter. Also provided are catalysts made from the alumina supports, and processes of preparing and using the supports and catalysts.
    Type: Application
    Filed: November 20, 2012
    Publication date: December 18, 2014
    Applicant: Advanced Refining Technologies LLC
    Inventors: Xianghua Yu, Bruno C. Nesci, Roberto Romero, Gill M. Malick, Jifei Jia, Cecelia A. Radlowski
  • Patent number: 8877671
    Abstract: A chelated hydroprocessing catalyst exhibiting low moisture is obtained by hearing an impregnated, calcined carrier to a temperature higher than 200° C. and less than a temperature and for a period of time that would cause substantial decomposition of the chelating agent.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: November 4, 2014
    Assignee: Advanced Refining Technologies LLC
    Inventors: Cecelia A. Radlowski, Gill M. Malick, Colleen T. Miedona
  • Publication number: 20140262956
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: ADVANCED REFINING TECHNOLOGIES LLC
    Inventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
  • Publication number: 20140174983
    Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks, the catalyst comprising a metal from Group 6, a metal from Group 8, and optionally phosphorous, wherein the carrier or support, comprises porous alumina comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (A); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 to less than about 1000 A; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 A.
    Type: Application
    Filed: August 3, 2012
    Publication date: June 26, 2014
    Applicant: ADVANCED REFINING TECHNOLOGIES LLC
    Inventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
  • Patent number: 8021538
    Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: September 20, 2011
    Assignee: Advanced Refining Technologies LLC
    Inventor: Darryl P. Klein
  • Patent number: 7642212
    Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at a low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: January 5, 2010
    Assignee: Advanced Refining Technologies LLC
    Inventor: Darryl P. Klein
  • Publication number: 20090298677
    Abstract: A chelated hydroprocessing catalyst exhibiting low moisture is obtained by hearing an impregnated, calcined carrier to a temperature higher than 200° C. and less than a temperature and for a period of time that would cause substantial decomposition of the chelating agent.
    Type: Application
    Filed: December 11, 2006
    Publication date: December 3, 2009
    Applicant: ADVANCED REFINING TECHNOLOGIES LLC
    Inventors: Cecelia A. Radlowski, Gill M. Malick, Colleen T. Miedona
  • Patent number: 7560407
    Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: July 14, 2009
    Assignee: Advanced Refining Technologies, LLC
    Inventor: Darryl P. Klein
  • Publication number: 20080207435
    Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.
    Type: Application
    Filed: April 16, 2008
    Publication date: August 28, 2008
    Applicant: Advanced Refining Technologies LLC
    Inventor: Darryl P. Klein
  • Publication number: 20080200330
    Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.
    Type: Application
    Filed: April 16, 2008
    Publication date: August 21, 2008
    Applicant: Advanced Refining Technologies LLC
    Inventor: Darryl P. Klein
  • Publication number: 20080190812
    Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.
    Type: Application
    Filed: April 16, 2008
    Publication date: August 14, 2008
    Applicant: Advanced Refining Technologies LLC
    Inventor: Darryl P. Klein
  • Publication number: 20050109674
    Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.
    Type: Application
    Filed: December 19, 2003
    Publication date: May 26, 2005
    Applicant: Advanced Refining Technologies LLC
    Inventor: Darryl Klein