Patents Assigned to Advanced Refining Technologies, LLC
-
Patent number: 9415384Abstract: Improved catalyst supports, supported catalyst, and method of preparing and using the catalysts for the hydrodesulfurization of a residuum hydrocarbon feedstock are disclosed. The catalyst supports comprise titania alumina having 5 wt % or less titania and have greater than 70% of their pore volume in pores having a diameter between 70 and 130 and less than 2% in pores having a diameter above 1000. Catalysts prepared from the supports contain Groups 6, 9 and 10 metals or metal compounds, and optionally phosphorus, supported on the titania alumina supports. Catalysts in accordance with the invention exhibit improved sulfur and MCR conversion in hydrotreating processes.Type: GrantFiled: June 20, 2013Date of Patent: August 16, 2016Assignee: Advanced Refining Technologies LLCInventors: Rong He, Stanislaw Plecha, Meenakshi S. Krishnamoorthy, Bharat M. Patel
-
Patent number: 9248438Abstract: A chelated hydroprocessing catalyst exhibiting low moisture is obtained by heating an impregnated, calcined carrier to a temperature higher than 200° C. and less than a temperature and for a period of time that would cause substantial decomposition of the chelating agent.Type: GrantFiled: September 24, 2014Date of Patent: February 2, 2016Assignee: Advanced Refining Technologies LLCInventors: Cecelia A. Radlowski, Gill M. Malick, Colleen T. Miedona
-
Publication number: 20160017240Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise alumina and 5 wt % or less titania. Catalyst prepared from the supports have at least 30 to 80 volume percent of its pore volume in pores having a diameter of between 200 and 500 angstroms. Catalysts in accordance with the invention exhibit improved catalytic activity and stability to remove metals from heavy feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion.Type: ApplicationFiled: February 14, 2013Publication date: January 21, 2016Applicant: ADVANCED REFINING TECHNOLOGIES LLCInventors: Viorel D. Duma, Matthew P. Woods
-
Patent number: 9216407Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.Type: GrantFiled: March 14, 2014Date of Patent: December 22, 2015Assignee: Advanced Refining Technologies LLCInventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
-
Publication number: 20150144532Abstract: Improved catalyst supports, supported catalyst, and method of preparing and using the catalysts for the hydrodesulfurization of a residuum hydrocarbon feedstock are disclosed. The catalyst supports comprise titania alumina having 5 wt % or less titania and have greater than 70% of their pore volume in pores having a diameter between 70 and 130 and less than 2% in pores having a diameter above 1000. Catalysts prepared from the supports contain Groups 6, 9 and 10 metals or metal compounds, and optionally phosphorus, supported on the titania alumina supports. Catalysts in accordance with the invention exhibit improved sulfur and MCR conversion in hydrotreating processes.Type: ApplicationFiled: June 20, 2013Publication date: May 28, 2015Applicant: Advanced Refining Technologies LLCInventors: Rong He, Stanislaw Plecha, Meenakshi S. Krishnamoorthy, Bharat M. Patel
-
Patent number: 8969242Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks, the catalyst comprising a metal from Group 6, a metal from Group 8, and optionally phosphorous, wherein the carrier or support, comprises porous alumina comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (A); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 to less than about 1000 A; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 A.Type: GrantFiled: August 3, 2012Date of Patent: March 3, 2015Assignee: Advanced Refining Technologies LLCInventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
-
Publication number: 20140367311Abstract: Alumina support compositions comprising at least 0.1 wt % of silica are disclosed. The alumina support are characterized by a pore volume of greater than 0.60 cc/g, a median pore size ranging from about 70 to about 120, a pore size distribution such that at least 90% of the total pore volume falls within the range of about 20 to about 250, and a pore size distribution width of no less than about 40. Alumina compositions of the present invention exhibit a primary peak mode at a pore diameter less than the median pore diameter. Also provided are catalysts made from the alumina supports, and processes of preparing and using the supports and catalysts.Type: ApplicationFiled: November 20, 2012Publication date: December 18, 2014Applicant: Advanced Refining Technologies LLCInventors: Xianghua Yu, Bruno C. Nesci, Roberto Romero, Gill M. Malick, Jifei Jia, Cecelia A. Radlowski
-
Patent number: 8877671Abstract: A chelated hydroprocessing catalyst exhibiting low moisture is obtained by hearing an impregnated, calcined carrier to a temperature higher than 200° C. and less than a temperature and for a period of time that would cause substantial decomposition of the chelating agent.Type: GrantFiled: December 11, 2006Date of Patent: November 4, 2014Assignee: Advanced Refining Technologies LLCInventors: Cecelia A. Radlowski, Gill M. Malick, Colleen T. Miedona
-
Publication number: 20140262956Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.Type: ApplicationFiled: March 14, 2014Publication date: September 18, 2014Applicant: ADVANCED REFINING TECHNOLOGIES LLCInventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
-
Publication number: 20140174983Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks, the catalyst comprising a metal from Group 6, a metal from Group 8, and optionally phosphorous, wherein the carrier or support, comprises porous alumina comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (A); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 to less than about 1000 A; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 A.Type: ApplicationFiled: August 3, 2012Publication date: June 26, 2014Applicant: ADVANCED REFINING TECHNOLOGIES LLCInventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
-
Patent number: 8021538Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.Type: GrantFiled: April 16, 2008Date of Patent: September 20, 2011Assignee: Advanced Refining Technologies LLCInventor: Darryl P. Klein
-
Patent number: 7642212Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at a low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.Type: GrantFiled: April 16, 2008Date of Patent: January 5, 2010Assignee: Advanced Refining Technologies LLCInventor: Darryl P. Klein
-
Publication number: 20090298677Abstract: A chelated hydroprocessing catalyst exhibiting low moisture is obtained by hearing an impregnated, calcined carrier to a temperature higher than 200° C. and less than a temperature and for a period of time that would cause substantial decomposition of the chelating agent.Type: ApplicationFiled: December 11, 2006Publication date: December 3, 2009Applicant: ADVANCED REFINING TECHNOLOGIES LLCInventors: Cecelia A. Radlowski, Gill M. Malick, Colleen T. Miedona
-
Patent number: 7560407Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.Type: GrantFiled: April 16, 2008Date of Patent: July 14, 2009Assignee: Advanced Refining Technologies, LLCInventor: Darryl P. Klein
-
Publication number: 20080207435Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.Type: ApplicationFiled: April 16, 2008Publication date: August 28, 2008Applicant: Advanced Refining Technologies LLCInventor: Darryl P. Klein
-
Publication number: 20080200330Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.Type: ApplicationFiled: April 16, 2008Publication date: August 21, 2008Applicant: Advanced Refining Technologies LLCInventor: Darryl P. Klein
-
Publication number: 20080190812Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with the stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.Type: ApplicationFiled: April 16, 2008Publication date: August 14, 2008Applicant: Advanced Refining Technologies LLCInventor: Darryl P. Klein
-
Publication number: 20050109674Abstract: Stable catalyst carrier impregnating solutions can be prepared using a component of a Group VIB metal, e.g., molybdenum, at high concentration, a component of a Group VIII metal, e.g., nickel, at low concentration, and a phosphorous component, e.g., phosphoric acid, at low concentration, provided that the Group VIII metal is in a substantially water-insoluble form and a particular sequence of addition of the components is followed, even when a substantially water-insoluble form of the Group VIB component is used. The resulting stabilized impregnating solution can be supplemented with additional Group VIII metal in water-soluble form to achieve increased levels of such metal in the final catalyst. Furthermore, uncalcined catalyst carriers impregnated with stable solution and subsequently shaped, dried and calcined, have unexpectedly improved performance when used in the hydroprocessing of heavy hydrocarbon feedstocks.Type: ApplicationFiled: December 19, 2003Publication date: May 26, 2005Applicant: Advanced Refining Technologies LLCInventor: Darryl Klein