Patents Assigned to Advanced Research Corporation
  • Patent number: 6987648
    Abstract: A thin film magnetic recording head utilizing a timing based servo pattern is fabricated using a focused ion beam (FIB). The recording head is fabricated by sputtering a magnetically permeable thin film onto a substrate. A gap pattern, preferably a timing based pattern, is defined on the thin film and the FIB cuts a gap through the thin film based on that pattern. Once completed, the recording head is used to write a servo track onto magnetic tape. The timing based servo track then allows for the precise alignment of data read heads based on the positional information obtained by a servo read head which scans the continuously variable servo track.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: January 17, 2006
    Assignee: Advanced Research Corporation
    Inventor: Matthew P. Dugas
  • Patent number: 6947247
    Abstract: Large angle azimuth recording methods and devices. In one aspect of the invention methods of recording one or data tracks having data transitions oriented at a large azimuth angle are provided. In another aspect of the invention methods of reading a data track having data transitions oriented at a large azimuth angle are provided. Such methods include steps of suppressing a side track signal. In other aspects of the invention, head modules and devices for writing and/or reading large azimuth angle data tracks are provided.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: September 20, 2005
    Assignee: Advanced Research Corporation
    Inventors: Theodore A. Schwarz, Matthew P. Dugas
  • Patent number: 6894869
    Abstract: A thin film magnetic recording head is fabricated by forming a substrate from opposing ferrite blocks which have a ceramic member bonded between them. This structure is then diced to form a plurality of columns, wherein each column has a ferrite/ceramic combination. Each column represents a single channel in the completed head. A block of ceramic is then cut to match the columned structure and the two are bonded together. The bonded structure is then cut or ground until a head is formed, having ceramic disposed between each channel. A ferrite back-gap is then added to each channel, minimizing the reluctance of the flux path. The thin film is patterned on the head to optimize various channel configurations.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: May 17, 2005
    Assignee: Advanced Research Corporation
    Inventor: Matthew P. Dugas
  • Publication number: 20040223248
    Abstract: Methods and systems for data recording and reading for increasing overall tape data storage density, especially for data written in azimuth style. The principles of the invention provide servo formats and systems that allow accurate on track guidance for higher density applications and that are less sensitive to off track error. Preferred embodiments of the invention offer servo formats and systems of the invention that allows positive track and group identification at the beginning, end, and optionally periodically along the length of a tape.
    Type: Application
    Filed: May 7, 2004
    Publication date: November 11, 2004
    Applicant: ADVANCED RESEARCH CORPORATION
    Inventors: Matthew P. Dugas, Theodore A. Schwarz, Gregory L. Wagner
  • Patent number: 6678116
    Abstract: A thin film magnetic recording head utilizing a timing based servo pattern is fabricated using a focused ion beam (FIB). The recording head is fabricated by sputtering a magnetically permeable thin film onto a substrate. A gap pattern, preferably a timing based pattern, is defined on the thin film and the FIB cuts a gap through the thin film based on that pattern. Once completed, the recording head is used to write a servo track onto magnetic tape. The timing based servo track then allows for the precise alignment of data read heads based on the positional information obtained by a servo read head which scans the continuously variable servo track.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: January 13, 2004
    Assignee: Advanced Research Corporation
    Inventor: Matthew P. Dugas
  • Patent number: 6616895
    Abstract: A solid state device is formed through thin film deposition techniques which results in a self-supporting thin film layer that can have a precisely defined channel bored therethrough. The device is useful in the chacterization of polymer molecules by measuring changes in various electrical characteristics as molecules pass through the channel. To form the device, a thin film layer having various patterns of electrically conductive leads are formed on a silicon substrate. Using standard lithography techniques, a relatively large or micro-scale aperture is bored through the silicon substrate which in turn exposes a portion of the thin film layer. This process does not affect the thin film. Subsequently, a high precision material removal process is used (such as a focused ion beam) to bore a precise nano-scale aperture through the thin film layer that coincides with the removed section of the silicon substrate.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: September 9, 2003
    Assignee: Advanced Research Corporation
    Inventors: Matthew P. Dugas, Gregory L. Wagner
  • Publication number: 20030039063
    Abstract: A thin film magnetic recording head is provided with a tape bearing surface that has magnetically isolated channels while still providing a maximum continuous surface area with which to engage the media. This can be accomplished by providing spaces in the magnetically permeable thin film that are large enough to prevent cross-talk between the channels, but small enough to prevent significant interference with the moving media. Alternatively, magnetically impermeable thin film spacers can be provided to magnetically isolate each of the channels. The spacers are generally even with the magnetically permeable thin film so as to provide a continuous media-bearing surface.
    Type: Application
    Filed: October 22, 2002
    Publication date: February 27, 2003
    Applicant: Advanced Research Corporation, a Minnesota corporation
    Inventor: Matthew P. Dugas
  • Patent number: 6496328
    Abstract: A thin film magnetic recording head is fabricated by forming a substrate from opposing ferrite blocks which have a ceramic member bonded between them. This structure is then diced to form a plurality of columns, wherein each column has a ferrite/ceramic combination. Each column represents a single channel in the completed head. A block of ceramic is then cut to match the columned structure and the two are bonded together. The bonded structure is then cut or ground until a head is formed, having ceramic disposed between each channel. A ferrite back-gap is then added to each channel, minimizing the reluctance of the flux path. The thin film is patterned on the head to optimize various channel configurations.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: December 17, 2002
    Assignee: Advanced Research Corporation
    Inventor: Matthew P. Dugas
  • Patent number: 6269533
    Abstract: A thin film magnetic recording head utilizing a timing based servo pattern is fabricated using a focused ion beam (FIB). The recording head is fabricated by sputtering a magnetically permeable thin film onto a substrate. A gap pattern, preferably a timing based pattern, is defined on the thin film and the FIB cuts a gap through the thin film based on that pattern. Once completed, the recording head is used to write a servo track onto magnetic tape. The timing based servo track then allows for the precise alignment of data read heads based on the positional information obtained by a servo read head which scans the continuously variable servo track.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: August 7, 2001
    Assignee: Advanced Research Corporation
    Inventor: Matthew P. Dugas