Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
Type:
Application
Filed:
December 23, 2010
Publication date:
April 28, 2011
Applicant:
Advanced Technology Materials, Inc.
Inventors:
Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
Abstract: A Chemical Mechanical Planarization (CMP) Pad. The CMP pad may be hydrophobic due to the incorporation of metal complexing agents. The CMP pad substantially retaining planarization characteristics throughout planarization applications. Shearing, hardness, wearing, water absorption and electrical characteristics of the CMP pad remain substantially constant during CMP applications.
Abstract: A process system adapted for processing of or with a material therein. The process system includes: a sampling region for the material; an infrared photometric monitor constructed and arranged to transmit infrared radiation through the sampling region and to responsively generate an output signal correlative of the material in the sampling region, based on its interaction with the infrared radiation; and process control means arranged to receive the output of the infrared photometric monitor and to responsively control one or more process conditions in and/or affecting the process system.
Abstract: An oxidizing aqueous cleaning composition and process for cleaning post-plasma etch residue and/or hardmask material from a microelectronic device having said residue thereon. The oxidizing aqueous cleaning composition includes at least one oxidizing agent, at least one oxidizing agent stabilizer comprising an amine species selected from the group consisting of primary amines, secondary amines, tertiary amines and amine-N-oxides, optionally at least one co-solvent, optionally at least one metal-chelating agent, optionally at least one buffering species, and water. The composition achieves highly efficacious cleaning of the residue material from the microelectronic device while simultaneously not damaging the interlevel dielectric and metal interconnect material also present thereon.
Type:
Grant
Filed:
October 4, 2006
Date of Patent:
April 12, 2011
Assignee:
Advanced Technology Materials, Inc.
Inventors:
David W. Minsek, Michael B. Korzenski, Martha M. Rajaratnam
Abstract: Compositions useful in semiconductor manufacturing for surface preparation and/or cleaning of wafer substrates such as semiconductor device precursor structures. The compositions can be employed for processing of wafers that have, or are intended to be further processed to include, copper metallization, e.g., in operations such as surface preparation, pre-plating cleaning, post-etching cleaning, and post-chemical mechanical polishing cleaning of semiconductor wafers. The compositions contain (i) alkanolamine, (ii) quaternary ammonium hydroxide and (iii) a complexing agent, and are storage-stable, as well as non-darkening and degradation-resistant in exposure to oxygen.
Type:
Grant
Filed:
January 27, 2005
Date of Patent:
April 12, 2011
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Elizabeth Walker, Shahri Naghshineh, Jeff Barnes, Ewa Oldak
Abstract: Compositions useful in microelectronic device manufacturing for surface preparation and/or cleaning of wafer substrates such as microelectronic device precursor structures. The compositions can be employed for processing of wafers that have, or are intended to be further processed to include, copper metallization, e.g., in operations such as surface preparation, pre-plating cleaning, post-etching cleaning, and post-chemical mechanical polishing cleaning of microelectronic device wafers. The compositions contain (i) alkanolamine, (ii) quaternary ammonium hydroxide and (iii) a complexing agent, and are storage-stable, as well as non-darkening and degradation-resistant in exposure to oxygen.
Type:
Grant
Filed:
January 26, 2006
Date of Patent:
April 12, 2011
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Elizabeth Walker, Shahri Naghshineh, Jeffrey A. Barnes, Ewa Oldak, Darryl W. Peters, Kevin P. Yanders
Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as low dielectric constant (k) thin films, high k gate silicates, low temperature silicon epitaxial films, and films containing silicon nitride (Si3N4), siliconoxynitride (SiOxNy) and/or silicon dioxide (SiO2). The precursors of the invention are amenable to use in low temperature (e.g., <500° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
Type:
Grant
Filed:
July 17, 2010
Date of Patent:
March 22, 2011
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Ziyun Wang, Chongying Xu, Ravi K. Laxman, Thomas H. Baum, Bryan C. Hendrix, Jeffrey F. Roeder
Abstract: Methods of implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. A method of manufacturing a semiconductor device including implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. Also disclosed are a system for supplying a boron hydride precursor, and methods of forming a boron hydride precursor and methods for supplying a boron hydride precursor. In one implementation of the invention, the boron hydride precursors are generated for cluster boron implantation, for manufacturing semiconductor products such as integrated circuitry.
Type:
Application
Filed:
October 27, 2010
Publication date:
March 17, 2011
Applicant:
Advanced Technology Materials, Inc.
Inventors:
W. Karl Olander, Jose I. Arno, Robert Kaim
Abstract: An aqueous-based composition and process for removing photoresist, bottom anti-reflective coating (BARC) material, and/or gap fill material from a substrate having such material(s) thereon. The aqueous-based composition includes a fluoride source, at least one organic amine, at least one organic solvent, water, and optionally chelating agent and/or surfactant. The composition achieves high-efficiency removal of such material(s) in the manufacture of integrated circuitry without adverse effect on metal species on the substrate, such as copper, and without damage to SiOC-based dielectric materials employed in the semiconductor architecture.
Type:
Grant
Filed:
December 1, 2004
Date of Patent:
February 15, 2011
Assignee:
Advanced Technology Materials, Inc.
Inventors:
David D. Bernhard, Yoichiro Fujita, Tomoe Miyazawa, Makoto Nakajima
Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <300° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least one disilane derivative compound that is fully substituted with alkylamino and/or dialkylamino functional groups.
Type:
Grant
Filed:
May 11, 2010
Date of Patent:
February 15, 2011
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Ziyun Wang, Chongying Xu, Thomas H. Baum, Bryan C. Hendrix, Jeffrey F. Roeder
Abstract: A method of implanting carbon ions into a target substrate, including: ionizing a carbon containing dopant material to produce a plasma having ions; optionally co-flowing an additional gas or series of gases with the carbon-containing dopant material; and implanting the ions into the target substrate. The carbon-containing dopant material is of the formula CwFxOyHz wherein if w=1, then x>0 and y and z can take any value, and wherein if w>1 then x or y is >0, and z can take any value. Such method significantly improves the efficiency of an ion implanter tool, in relation to the use of carbon source gases such as carbon monoxide or carbon dioxide.
Type:
Application
Filed:
July 22, 2010
Publication date:
January 27, 2011
Applicant:
Advanced Technology Materials, Inc.
Inventors:
Joseph D. SWEENEY, Oleg BYL, Robert KAIM
Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
Type:
Grant
Filed:
July 30, 2008
Date of Patent:
January 4, 2011
Assignee:
Advanced Technology Materials, Inc.
Inventors:
J. Donald Carruthers, Frank Dimeo, Jr., Brian Bobita
Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
Type:
Grant
Filed:
April 27, 2010
Date of Patent:
January 4, 2011
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <550° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least a silane or disilane derivative that is substituted with at least one alkylhydrazine functional groups and is free of halogen substitutes.
Type:
Grant
Filed:
January 24, 2008
Date of Patent:
January 4, 2011
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Ziyun Wang, Chongying Xu, Thomas H. Baum
Abstract: A semiconductor manufacturing process facility requiring use therein of air exhaust for its operation, such facility including clean room and gray room components, with the clean room having at least one semiconductor manufacturing tool therein, and wherein air exhaust is flowed through a region of the clean room. The facility includes an air exhaust treatment apparatus arranged to (i) receive air exhaust after flow thereof through said region of said clean room, (ii) produce a treated air exhaust, and (iii) recirculate the treated air exhaust to an ambient air environment in the facility, e.g., to the gray room of the facility.
Type:
Grant
Filed:
February 3, 2009
Date of Patent:
December 28, 2010
Assignee:
Advanced Technology Materials, Inc.
Inventors:
W. Karl Olander, Joseph D. Sweeney, Luping Wang
Abstract: Tantalum compounds of Formula I hereof are disclosed, having utility as precursors for forming tantalum-containing films such as barrier layers. The tantalum compounds of Formula I may be deposited by CVD or ALD for forming semiconductor device structures including a dielectric layer, a barrier layer on the dielectric layer, and a copper metallization on the barrier layer, wherein the barrier layer includes a Ta-containing layer and sufficient carbon so that the Ta-containing layer is amorphous. According to one embodiment, the semiconductor device structure is fabricated by depositing the Ta-containing barrier layer, via CVD or ALD, from a precursor including the tantalum compound of Formula I hereof at a temperature below about 400° C. in a reducing or inert atmosphere, e.g., a gas or plasma optionally containing a reducing agent.
Type:
Grant
Filed:
May 30, 2010
Date of Patent:
December 28, 2010
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum
Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
Type:
Application
Filed:
August 22, 2010
Publication date:
December 16, 2010
Applicant:
Advanced Technology Materials, Inc.
Inventors:
William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Melissa A. Petruska, Matthias Stender, Philip S.H. Chen, Gregory T. Stauf, Bryan C. Hendrix
Abstract: An apparatus and method including storage and dispensing vessels to safely store and dispense gaseous hydrides, where the storage and dispensing vessels contain a solid-phase physical sorbent medium having a physically sorptive affinity for gaseous hydrides, and wherein the gaseous hydride is decomposed in the apparatus to generate hydrogen gas. The gaseous hydrides include, but are not limited to, silane, germane, stibine and diborane. The gaseous hydrides decompose spontaneously and/or decomposition is enhanced using surface modified adsorbents. The hydrogen generated by the apparatus may be used in a fuel cell or other hydrogen gas consuming unit.
Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as films including silicon carbonitride, silicon oxycarbonitride, and silicon nitride (Si3N4), and a method of depositing the silicon precursors on substrates using low temperature (e.g., <550° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
Type:
Application
Filed:
August 24, 2010
Publication date:
December 16, 2010
Applicant:
Advanced Technology Materials, Inc.
Inventors:
Ziyun WANG, Chongying Xu, Bryan Hendrix, Jeffrey Roeder, Tianniu Chen, Thomas H. Baum
Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
Type:
Grant
Filed:
May 12, 2007
Date of Patent:
November 23, 2010
Assignee:
Advanced Technology Materials, Inc.
Inventors:
William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Melissa A. Petruska, Matthias Stender, Philip S. H. Chen, Gregory T. Stauf, Bryan C. Hendrix