Abstract: A composite ophthalmic device comprising an ophthalmic structure, means or lens having a photo-shifting material deployed thereon or therewithin so as to up-shift or down-shift the amplitude, wavelength (or both) of incident radiation into the visible wavelength range.
Abstract: The current invention provides a method of forming a foldable intraocular having a high refractive index from a copolymer comprising a first monomer comprising an aryl acrylate or an aryl methacrylate; a second monomer comprising an aromatic ring comprising a substituent having one ethylenic unsaturation, provided that the second monomer is not an aryl acryate or aryl methacrylate, and a third monomer comprising one ethylenic unsaturation that, if polymerized into a homopolymer, forms a high water content hydrogel; and, optionally, a cross-linking agent.
Abstract: This invention relates to a method of making an intraocular lens insertion device comprising a lubricious insertion tip assembly and to the device itself.
Abstract: The present invention relates to an intraocular lens which exhibits reduced or eliminated glistenings when implanted into the eye of a patient in need thereof and to a method of preparing such lens.
Abstract: A high refractive index, foldable polymer suitable for use in ophthalmic devices, such as intraocular lenses, is provided. The polymer may be produced from a polymerization reaction of first, second and third monomeric components and a crosslinking agent. The first monomeric component includes an aryl acrylate or an aryl methacrylate. The second monomeric component, which is not an acrylate, includes a monomer having an aromatic ring with a substituent having at least one site of ethylenic unsaturation. The third monomeric component includes a high water content hydrogel-forming monomer. The resulting high refractive index copolymer is durable enough to be cut and polished when dry, and becomes soft and foldable when hydrated.