Patents Assigned to Advanced Vision Technologies, Inc.
  • Patent number: 6254805
    Abstract: A phosphor comprises, in atomic percentages, 90% to 100% of a mixed metal oxide MxTyOz, wherein M is a metal selected from Zn, Sn, In, Cu, and combinations thereof, T is a refractory metal selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and combinations thereof, and O is Oxygen, x, y, and z being chosen such that z is at most stoichiometric for MxTyOz; and 0% to 10% of a dopant comprising a substance selected from a rare earth element of the lanthanide series, Mn, Cr, and combinations thereof, or stoichiometrically excess zinc, copper, tin, or indium. Cathodoluminescent phosphor compositions stimulable by electrons of very low energy are prepared from metal oxides treated with refractory metals in various processes disclosed.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: July 3, 2001
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter
  • Patent number: 6241911
    Abstract: A phosphor comprises, in atomic percentages, 90% to 100% of a mixed metal oxide MxTyOz, wherein M is a metal selected from Zn, Sn, In, Cu, and combinations thereof, T is a refractory metal selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and combinations thereof, and O is Oxygen, x, y, and z being chosen such that z is at most stoichiometric for MxTyOz; and 0% to 10% of a dopant comprising a substance selected from a rare earth element of the lanthanide series, Mn, Cr, and combinations thereof, or stoichiometrically excess zinc, copper, tin, or indium. Cathodoluminescent phosphor compositions stimulable by electrons of very low energy are prepared from metal oxides treated with refractory metals in various processes disclosed.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: June 5, 2001
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter
  • Patent number: 6169357
    Abstract: An electron field-emission display comprises one or more display cell structures, each having a field-emission cathode and an anode comprising at least one of several cathodoluminescent phosphors disclosed. The display cell structures may also have one or more gate elements for controlling electron current flowing from cathode to anode when suitable electrical bias voltages are applied. A cell may have more than one phosphor, and in particular may have red, green, and blue phosphors selectively arranged. Each pixel site may have one anode of each color phosphor. The phosphors are preferably prepared in situ in an electrically-conductive thin-film or surface-layer form during fabrication of the display. A preferred fabrication process integrates an etch stop with the in situ phosphor process, the etch stop precisely defining the depth of an opening in the display cell structure.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: January 2, 2001
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D Potter
  • Patent number: 6071633
    Abstract: A phosphor comprises, in atomic percentages, 90% to 100% of a mixed metal oxide MxTyOz, wherein M is a metal selected from Zn, Sn, In, Cu, and combinations thereof, T is a refractory metal selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and combinations thereof, and O is Oxygen, x, y, and z being chosen such that z is at most stoichiometric for MxTyOz; and 0% to 10% of a dopant comprising a substance selected from a rare earth element of the lanthanide series, Mn, Cr, and combinations thereof, or stoichiometrically excess zinc, copper, tin, or indium. Cathodoluminescent phosphor compositions stimulable by electrons of very low energy are prepared from metal oxides treated with refractory metals in various processes disclosed.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: June 6, 2000
    Assignee: Advanced Vision Technologies, Inc
    Inventor: Michael D Potter
  • Patent number: 6037708
    Abstract: A lateral-emitter field emission device has a thin-film emitter cathode 50 which has thickness of not more than several hundred angstroms and has an edge or tip 110 having a small radius of curvature. To form a novel display cell structure, a cathodoluminescent phosphor anode 60 is positioned below the plane of the thin-film lateral-emitter cathode 50, allowing a large portion of the phosphor anode's top surface to emit light in the desired direction. An anode contact layer contacts the phosphor anode 60 from below to form a buried anode contact 90 which does not interfere with light emission. The anode phosphor is precisely spaced apart from the cathode edge or tip and receives electrons emitted by field emission from the edge or tip of the lateral-emitter cathode, when a small bias voltage is applied. The device may be configured as a diode, triode, or tetrode, etc.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: March 14, 2000
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter
  • Patent number: 6017257
    Abstract: A self-gettering electron field emitter has a first portion formed of a low-work-function material for emitting electrons, and it has an integral second portion that acts both as a low-resistance electrical conductor and as a gettering surface. The self-gettering emitter is formed by disposing a thin film of the low-work-function material parallel to a substrate and by disposing a thin film of the low-resistance gettering material parallel to the substrate and in contact with the thin film of the low-work-function material. The self-gettering emitter is particularly suitable for use in lateral field emission devices. The preferred emitter structure has a tapered edge, with a salient portion of the low-work-function material extending a small distance beyond an edge of the gettering and low resistance material. A fabrication process specially adapted for in situ formation of the self-gettering electron field emitters while fabricating microelectronic field emission devices is also disclosed.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: January 25, 2000
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D Potter
  • Patent number: 6015326
    Abstract: An electron field-emission display comprises one or more display cell structures, each having a field-emission cathode and an anode comprising at least one of several cathodoluminescent phosphors disclosed which are stimulable by electrons of very low energy. The display cell structures may also have gate elements for controlling electron current flowing from cathode to anode when suitable electrical bias voltages are applied. A preferred fabrication process integrates an etch stop with an in situ phosphor formation process. The etch stop precisely defines the depth of an opening in the display cell structure.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: January 18, 2000
    Assignee: Advanced Vision Technologies,Inc.
    Inventor: Michael D Potter
  • Patent number: 6015324
    Abstract: A device useful as a display element has an electron emitter and an anode disposed to receive electrons emitted from the emitter. The anode has surface portions differing in resistivity, providing an electron sink portion at the surface portion of lowest resistivity. A preferred embodiment has a lateral field-emission electron emitter and has an anode formed by processes specially adapted to provide anode portions of differing resistivity, including the electron sink portion. The electron sink portion is preferably disposed at a position laterally spaced apart from the emitting tip of the device's electron emitter.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: January 18, 2000
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D Potter
  • Patent number: 6004830
    Abstract: A lateral-emitter field emission device has a gate that is separated by an insulating layer from a vacuum- or gas-filled environment containing other elements of the device. For example, the gate may be disposed external to the microchamber. The insulating layer is disposed such that there is no vacuum- or gas-filled path to the gate for electrons that are emitted from a lateral emitter. The insulating layer disposed between the emitter and the gate preferably comprises a material having a dielectric constant greater than one. The insulating layer also preferably has a low secondary electron yield over the device's operative range of electron energies. For display applications, the insulating layer is preferably transparent. Emitted electrons are confined to the microchamber containing their emitter. Thus, the gate current component of the emitter current consists of displacement current only.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: December 21, 1999
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter
  • Patent number: 6005335
    Abstract: A self-gettering electron field emitter has a first portion formed of a low-work-function material for emitting electrons, and it has an integral second portion that acts both as a low-resistance electrical conductor and as a gettering surface. The self-gettering emitter is formed by disposing a thin film of the low-work-function material parallel to a substrate and by disposing a thin film of the low-resistance gettering material parallel to the substrate and in contact with the thin film of the low-work-function material. The self-gettering emitter is particularly suitable for use in lateral field emission devices. The preferred emitter structure has a tapered edge, with a salient portion of the low-work-function material extending a small distance beyond an edge of the gettering and low resistance material. A fabrication process specially adapted for in situ formation of the self-gettering electron field emitters while fabricating microelectronic field emission devices is also disclosed.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: December 21, 1999
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D Potter
  • Patent number: 5965192
    Abstract: A phosphor comprises, in atomic percentages, 90% to 100% of a mixed metal oxide MxTyOz, wherein M is a metal selected from Zn, Sn, In, Cu, and combinations thereof, T is a refractory metal selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and combinations thereof, and O is Oxygen, x, y, and z being chosen such that z is at most stoichiometric for MxTyOz; and 0% to 10% of a dopant comprising a substance selected from a rare earth element of the lanthanide series, Mn, Cr, and combinations thereof, or stoichiometrically excess zinc, copper, tin, or indium. Cathodoluminescent phosphor compositions stimulable by electrons of very low energy are prepared from metal oxides treated with refractory metals in various processes disclosed.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: October 12, 1999
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter
  • Patent number: 5920148
    Abstract: A lateral-emitter field emission device has a thin-film emitter cathode 50 which has thickness of not more than several hundred angstroms and has an edge or tip 110 having a small radius of curvature. To form a novel display cell structure, a cathodoluminescent phosphor anode 60 is positioned below the plane of the thin-film lateral-emitter cathode 50, allowing a large portion of the phosphor anode's top surface to emit light in the desired direction. An anode contact layer contacts the phosphor anode 60 from below to form a buried anode contact 90 which does not interfere with light emission. The anode phosphor is precisely spaced apart from the cathode edge or tip and receives electrons emitted by field emission from the edge or tip of the lateral-emitter cathode, when a small bias voltage is applied. The device may be configured as a diode, triode, or tetrode, etc.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: July 6, 1999
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter
  • Patent number: 5872421
    Abstract: A device useful as a display element has an electron emitter and an anode disposed to receive electrons emitted from the emitter. The anode has surface portions differing in resistivity, providing an electron sink portion at the surface portion of lowest resistivity. A preferred embodiment has a lateral field-emission electron emitter and has an anode formed by processes specially adapted to provide anode portions of differing resistivity, including the electron sink portion. The electron sink portion is preferably disposed at a position laterally spaced apart from the emitting tip of the device's electron emitter.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: February 16, 1999
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D Potter
  • Patent number: 5850123
    Abstract: A microelectronic light-emitting device (10) is made with dual lateral thin-film emitters (35 and 40) substantially parallel to a substrate (20). Emitter electrodes (35 and 40) have a thickness of not more than several hundred angstroms. Each emitter has an emitting blade edge (110 or 115) having a small radius of curvature. Thus, opposed emitters for two opposite-sign carriers are provided, shaped to provide very high electric field intensity at their emitting tips. A region containing phosphor (50) extends between the two emitters and contacts them. When a suitable bias voltage is applied, electrons are injected into the phosphor from the blade edge of one emitter and holes are injected from the other emitter. The sum of diffusion lengths of the carriers (including secondary carriers) is equal to or greater than the shortest distance between the emitters. DC, AC, pulsed, or other voltage waveforms can be applied. Light emission is excited from the phosphor by carrier recombination.
    Type: Grant
    Filed: July 24, 1997
    Date of Patent: December 15, 1998
    Assignee: Advanced Vision Technologies, Inc
    Inventor: Michael D. Potter
  • Patent number: 5831384
    Abstract: A microelectronic light-emitting device (10) is made with dual lateral thin-film emitters (35 and 40) substantially parallel to a substrate (20). Emitter electrodes (35 and 40) have a thickness of not more than several hundred angstroms. Each emitter has an emitting blade edge (110 or 115) having a small radius of curvature. Thus, opposed emitters for two opposite-sign carriers are provided, shaped to provide very high electric field intensity at their emitting tips. A region containing phosphor (50) extends between the two emitters and contacts them. When a suitable bias voltage is applied, electrons are injected into the phosphor from the blade edge of one emitter and holes are injected from the other emitter. The sum of diffusion lengths of the carriers (including secondary carriers) is equal to or greater than the shortest distance between the emitters. DC, AC, pulsed, or other voltage waveforms can be applied. Light emission is excited from the phosphor by carrier recombination.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: November 3, 1998
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter
  • Patent number: 5811929
    Abstract: A field emission device (10) is made with a lateral emitter (100) substantially parallel to a substrate (20) and with a simplified anode structure (70). The lateral-emitter field-emission device has a thin-film emitter cathode (100) which has a thickness not exceeding several hundred angstroms and has an emitting blade edge or tip (110) having a small radius of curvature. The anode's top surface is precisely spaced apart from and below the plane of the lateral emitter and receives electrons emitted by field emission from the blade edge or tip of the lateral-emitter cathode, when a suitable bias voltage is applied. The device may be configured as a diode, or as a triode, tetrode, etc. having one or more control electrodes (140) positioned to allow control of current from the emitter to the anode by an electrical signal applied to the control electrode.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: September 22, 1998
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter
  • Patent number: 5703380
    Abstract: A lateral-emitter electron field emission device structure incorporates a thin film laminar composite emitter structure including two or more films composed of materials having different etch rates when etched by an etchant. In its simplest form, the laminar composite emitter consists of two ultra-thin layers, etched differentially so that a salient remaining portion of the more etch-resistant layer protrudes beyond the less etch-resistant layer to form a small-radius tip. In a preferred form of the laminar composite emitter, it is a multi-layer laminar emitter, of which the most etch-resistant layer is doped-diamond. The diamond layer is doped using one or more N-type dopants. In this preferred emitter structure, the edge of the thin film diamond layer is the dominant electron emitter with a very low (nearly zero) work function. Hence the new device can operate at applied voltages substantially lower than in prior art. The laminar structure may be a sandwich structure with three layers.
    Type: Grant
    Filed: June 13, 1995
    Date of Patent: December 30, 1997
    Assignee: Advanced Vision Technologies Inc.
    Inventor: Michael D. Potter
  • Patent number: 5700176
    Abstract: A fabrication process is disclosed using process steps (S1-S18) similar to those of semiconductor integrated circuit fabrication to produce lateral-emitter field-emission devices and their arrays. In a preferred fabrication process for the simplified anode device, the following steps are performed: an anode film (70) is deposited; an insulator film (90) is deposited over the anode film; an ultra-thin conductive emitter film (100) is deposited over the insulator and patterned; a trench opening (160) is etched through the emitter and insulator, stopping at the anode film, thus forming and automatically aligning an emitting edge of the emitter; and means are provided for applying an electrical bias to the emitter and anode, sufficient to cause field emission of electrons from the emitting edge of the emitter to the anode. The anode film may comprise a phosphor (75) for a device specially adapted for use in a field emission display.
    Type: Grant
    Filed: October 22, 1996
    Date of Patent: December 23, 1997
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter
  • Patent number: 5669802
    Abstract: A microelectronic light-emitting device (10) is made with dual lateral thin-film emitters (35 and 40) substantially parallel to a substrate (20). A region containing phosphor (50) extends between the two emitters and contacts them. A fabrication process is specially adapted to produce the light-emitting devices and/or arrays of light-emitting devices. The process allows the use of conductive or insulating base or starting substrates.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: September 23, 1997
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter
  • Patent number: 5666019
    Abstract: An improved high-frequency field-emission microelectronic device (10) has a substrate (20) and an ultra-thin emitter electrode (30) extending parallel to the substrate and having an electron-emitting lateral edge (110) facing an anode (40) across an emitter-to-anode gap (120). A control electrode (70), having a lateral dimension only a minor fraction of the emitter-to-anode gap width, is disposed parallel to the emitter and spaced apart from the emitter by an insulator (60) of predetermined thickness. A vertical dimension of the control electrode is only a minor fraction of the height of the anode. The control electrode may substantially surround a portion of the anode, spaced from the anode in concentric relationship.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: September 9, 1997
    Assignee: Advanced Vision Technologies, Inc.
    Inventor: Michael D. Potter