Patents Assigned to Advantest America, Inc.
  • Patent number: 10564184
    Abstract: An apparatus for electrically testing a semiconductor device comprises a probe card comprising a probe, wherein the probe comprises a probe tip. Further, the probe tip comprises a foot with an arbitrarily sized cross-section and an apex with an arbitrarily sized cross-section, wherein the cross-section of the foot is wider than the cross-section of the apex.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: February 18, 2020
    Assignee: Advantest America, Inc.
    Inventor: Florent Cros
  • Patent number: 9678108
    Abstract: The method for forming a semiconductor probe tip comprises depositing a first copper layer onto exposed electrically conductive areas of a wafer. The first copper layer surrounds a non-conductive polymer structure on the wafer. The non-conductive polymer structure is removed to form a primary cavity in the first copper layer. The wafer and the primary cavity are coated with a polymer layer. Regions of the polymer layer are removed to form a secondary cavity within and alongside the primary cavity. A metal layer is deposited on exposed electrically conductive areas of the wafer and within bounds of the secondary cavity.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: June 13, 2017
    Assignee: ADVANTEST AMERICA, INC.
    Inventor: Florent Cros
  • Patent number: 9194887
    Abstract: An apparatus for testing electronic devices is disclosed. The apparatus includes a plurality of probes attached to a substrate; wherein each probe is capable of elastic deformation when the probe tip comes in contact with the electronic devices; each probe comprising a plurality of isolated electrical vertical interconnect accesses (vias) connecting each probe tip to the substrate, such that each probe tip of the plurality is capable of conducting an electrical current from the device under test to the substrate. The plurality of probes may form a probe comb. Also disclosed is a probe comb holder that has at least one slot where the probe comb may be disposed. A method for assembling and disassembling the probe comb and probe comb holder is also disclosed which allows for geometric alignment of individual probes.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: November 24, 2015
    Assignee: Advantest America, Inc.
    Inventors: Florent Cros, Lakshmi Namburi, Ting Hu
  • Patent number: 9000793
    Abstract: An apparatus for testing electronic devices is disclosed. The apparatus includes a plurality of probes attached to a substrate; each probe capable of elastic deformation when the probe tip comes in contact with the electronic; each probe comprising a plurality of isolated electrical vertical interconnected accesses (vias) connecting each probe tip to the substrate, such that each probe tip of the plurality is capable of conducting an electrical current from the device under test to the substrate. The plurality of probes may form a probe comb. Also disclosed is a probe comb holder that has at least one slot where the probe comb may be disposed. A method for assembling and disassembling the probe comb and probe comb holder is also disclosed which allows for geometric alignment of individual probes.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: April 7, 2015
    Assignee: Advantest America, Inc.
    Inventors: Florent Cros, Lakshmi Namburi, Ting Hu
  • Patent number: 8917106
    Abstract: Provided are microfabricated probe elements, including elastomer elements, and methods of making the same, that can be readily used with fine pitch microelectronic arrays, for instance by providing sufficient compliance in a small package, while minimizing deflection forces, and while precisely maintaining the planarity and positioning of the contact tips across vast grid arrays. Elastomer elements may be generated using photolithography, either directly or through a sacrificial lost-mold process. Elastomer probe elements are provided with rigid tip structures microfabricated thereon to improve contact pressure. A novel space transformation probe card assembly is also provided.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: December 23, 2014
    Assignee: Advantest America, Inc.
    Inventors: Laksmi Namburi, Matt Losey, Florent Cros
  • Patent number: 8901950
    Abstract: Microelectronic contactors on a probe contactor substrate, or adhesive elements on a probe contactor or space transformer substrate, are protected by a sacrificial material as 1) the microelectronic contactors or adhesive elements are planarized, or 2) a surface of the substrate on which the microelectronic contactors or adhesive elements are formed is planarized. The adhesive elements are used to bond the probe contactor substrate to the space transformer substrate.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: December 2, 2014
    Assignee: Advantest America, Inc
    Inventors: Yohannes Desta, Lakshmikanth Namburi, Matthew Losey
  • Patent number: 8747642
    Abstract: Processes are provided herein for the fabrication of MEMS utilizing both a primary metal that is integrated into the final MEMS structure and a sacrificial secondary metal that provides structural support for the primary metal component during machining. More specifically, techniques are disclosed to increase the rate of secondary metal deposition between primary metal features in order to prevent voiding in the sacrificial secondary metal and thus enhance structural support of the primary metal during machining.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: June 10, 2014
    Assignee: Advantest America, Inc.
    Inventor: Montray Leavy
  • Publication number: 20140132298
    Abstract: An apparatus for testing electronic devices is disclosed. The apparatus includes a plurality of probes attached to a substrate; each probe capable of elastic deformation when the probe tip comes in contact with the electronic; each probe comprising a plurality of isolated electrical vertical interconnected accesses (vias) connecting each probe tip to the substrate, such that each probe tip of the plurality is capable of conducting an electrical current from the device under test to the substrate. The plurality of probes may form a probe comb. Also disclosed is a probe comb holder that has at least one slot where the probe comb may be disposed. A method for assembling and disassembling the probe comb and probe comb holder is also disclosed which allows for geometric alignment of individual probes.
    Type: Application
    Filed: January 17, 2013
    Publication date: May 15, 2014
    Applicant: ADVANTEST AMERICA, INC.
    Inventors: Florent Cros, Lakshmi Namburi, Ting Hu
  • Publication number: 20140132300
    Abstract: An apparatus for testing electronic devices is disclosed. The apparatus includes a plurality of probes attached to a substrate; each probe capable of elastic deformation when the probe tip comes in contact with the electronic; each probe comprising a plurality of isolated electrical vertical interconnected accesses (vias) connecting each probe tip to the substrate, such that each probe tip of the plurality is capable of conducting an electrical current from the device under test to the substrate. The plurality of probes may form a probe comb. Also disclosed is a probe comb holder that has at least one slot where the probe comb may be disposed. A method for assembling and disassembling the probe comb and probe comb holder is also disclosed which allows for geometric alignment of individual probes.
    Type: Application
    Filed: January 17, 2013
    Publication date: May 15, 2014
    Applicant: ADVANTEST AMERICA, INC.
    Inventors: Florent Cros, Lakshmi Namburi, Ting Hu
  • Patent number: 8344748
    Abstract: A novel hybrid probe design is presented that comprises a torsion element and a bending element. These elements allow the probe to store the displacement energy as torsion or as bending. The novel hybrid probe comprises a probe base, a torsion element, a bending element, and a probe tip. The probe elastically deforms to absorb the displacement energy as the probe tip contacts the DUT contact pad. The bending element absorbs some of the displacement energy through bending. Because the torsion element and the bending element join at an angle between ?90 degrees and 90 degrees, a portion of the displacement energy is transferred to the torsion element causing it to twist (torque). The torsion element can also bend to accommodate the storage of energy through torsion and bending. Also, adjusting the position of a pivot can be manipulated to alter the energy absorption characteristics of the probe. One or more additional angular elements may be added to change the energy absorption characteristics of the probe.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: January 1, 2013
    Assignee: Advantest America, Inc.
    Inventors: Melvin Khoo, Ting Hu, Matthew Losey
  • Patent number: 8309382
    Abstract: Processes are provided herein for the fabrication of MEMS utilizing both a primary metal that is integrated into the final MEMS structure and two or more sacrificial secondary metals that provide structural support for the primary metal component during machining. A first secondary metal is thinly plated around the primary metal and over the entire surface of the substrate without using photolithography. A second secondary metal, is then thickly plated over the deposited first secondary metal without using photolithography. Additionally, techniques are disclosed to increase the deposition rate of the first secondary metal between primary metal features in order to prevent voiding and thus enhance structural support of the primary metal during machining.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: November 13, 2012
    Assignee: Advantest America, Inc.
    Inventor: Montray Leavy
  • Patent number: 8305101
    Abstract: A plurality of inserts are anchored in holes or recesses in a probe head. Shafts are coupled to the inserts, and adjustable multi-part fasteners are attached to the shafts and to a stiffener. The multi-part fasteners are operated to move the shafts and couple the probe head, the stiffener, and other components of a microelectronic contactor assembly. In some embodiments, the inserts may be anchored in the probe head using an adhesive. In some embodiments, the probe head may comprise more than one major substrate, and the inserts may be anchored in either of the substrates.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: November 6, 2012
    Assignee: Advantest America, Inc
    Inventors: Yohannes Desta, Chang Huang, Lakshmikanth Namburi, Matthew Losey
  • Patent number: 8278956
    Abstract: A microelectronic contactor assembly can include a probe head having microelectronic contactors for contacting terminals of semiconductor devices to test the semiconductor devices. A stiffener assembly can provide mechanical support to microelectronic contactors and for connecting a probe card assembly to a prober machine. A stiffener assembly may include first and second stiffener bodies that are connected together at their central portions with adjustment mechanisms such as three differential screw mechanisms. A probe head may be attached to a first stiffener body at locations outside its central portion, while a prober machine may be attached to a second stiffener body at locations outside its central portion. The first and second stiffener bodies may have different coefficients of thermal expansion.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: October 2, 2012
    Assignee: Advantest America, Inc
    Inventors: Matt Losey, Melvin Khoo, Yohannes Desta, Chang Huang
  • Patent number: 8268156
    Abstract: Processes are provided herein for the fabrication of MEMS utilizing both a primary metal that is integrated into the final MEMS structure and two or more sacrificial secondary metals that provide structural support for the primary metal component during machining. A first secondary metal is thinly plated around the primary metal and over the entire surface of the substrate without using photolithography. A second secondary metal, is then thickly plated over the deposited first secondary metal without using photolithography. Additionally, techniques are disclosed to increase the deposition rate of the first secondary metal between primary metal features in order to prevent voiding and thus enhance structural support of the primary metal during machining.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: September 18, 2012
    Assignee: Advantest America, Inc.
    Inventor: Montray Leavy
  • Patent number: 8232818
    Abstract: A probe head for a microelectronic contactor assembly includes a space transformer substrate and a probe contactor substrate. Surface mount technology (SMT) electronic components are positioned close to conductive elements on the probe contactor substrate by placing the SMT electronic components in cavities in the probe contactor substrate, which cavities may be through-hole or non-through-hole cavities. In some cases, the SMT electronic components may be placed on pedestal substrates. SMT electronic components may also be positioned between the probe contactor and space transformer substrates.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: July 31, 2012
    Assignee: Advantest America, Inc.
    Inventors: Yohannes Desta, Lakshmikanth Namburi, Matthew Losey
  • Patent number: 8232816
    Abstract: A probe head for testing semiconductor wafers has a probe contactor substrate have a first side and a second side. A plurality of probe contactor tips are coupled to the first side and the plurality of tips lie in a first plane. A plurality of mounting structures are coupled to the second side with each of the mounting structures each having a top surface lying in a second plane, wherein the first plane is substantially parallel to the second plane.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: July 31, 2012
    Assignee: Advantest America, Inc.
    Inventors: Salleh Ismail, Raffi Garabedian, Steven Wang