Abstract: Facile ways towards the development of linear and brush-type zwitterionic conjugated polyelectrolytes possessing hole or electron blocking abilities are presented using combination of polymerization techniques, such as Suzuki or Stille cross coupling, Grignard Metathesis Polymerization and Atom transfer radical polymerization. These zwitterionic conjugated polyelectrolytes will serve as excellent interface materials in various optoelectronic devices.
Type:
Application
Filed:
April 25, 2014
Publication date:
October 30, 2014
Applicant:
Advent Technologies Inc.
Inventors:
Christos L. Chochos, Vasilis G. Gregoriou
Abstract: New polymeric networks bearing benzimidazole units have been prepared. These polymeric networks will combine high proton conductivity, superior mechanical properties and thermal and oxidative stability due to the existence of polar benzimidazole groups and the presence of the unique polymeric architecture. The prepared polymer networks can be used in the catalyst ink of the electrodes in high temperature PEM fuel cells.
Type:
Application
Filed:
April 15, 2014
Publication date:
October 16, 2014
Applicant:
Advent Technologies Inc.
Inventors:
Christos L. Chochos, Vasilis G. Gregoriou
Abstract: New multifunctional aromatic copolymers bearing pyridine or pyrimidine units either in the main chain or side chain and single wall carbon nanotubes or multi wall carbon nanotubes as side chain pendants have been prepared. These multifunctional materials will combine both high proton and electrical conductivity due to the existence of polar pyridine or pyrimidine groups and carbon nanotubes within the same chemical structure. The prepared multifunctional materials can be used in the catalyst ink of the electrodes in high temperature PEM fuel cells.
Abstract: A power system is provided which includes hydrogen production via reformation of gaseous or liquid hydrocarbons and/or alcohol feedstocks, in combination with high temperature PEM fuel cells which function as a power source, particularly for beverage and/or water cooler appliances, refrigerators or freezers and methods of use thereof.
Type:
Application
Filed:
October 7, 2011
Publication date:
April 12, 2012
Applicants:
Frigoglass S.A.I.C., Advent Technologies, HELBIO S.A. Hydrogen and Energy Production Systems
Inventors:
Spyridon Masouras, Maria Michalopoulou, Nikolaos Triantafyllopoulos, Nora Gourdoupi, Thomas Halkides, Andreas Stavrakas
Abstract: Facile ways towards the integration of the regioregular poly(3-alkylthiophene)s onto carbon nanotubes, providing multifunctional materials that combine the extraordinary properties of the carbon nanotubes with those of regioregular poly(3-alkylthiophene)s, are presented.
Abstract: The subject invention relates to the development and characterization of a new series of poly (arylene ether) copolymers containing pyridine and biphenyl or hydroquinone moieties. Preferred polymers can exhibit very good mechanical properties, high thermal and oxidative stability and high doping ability with strong acids. The invention further relates to the preparation and application of MEA on PEMFC type single cells.
Type:
Grant
Filed:
May 24, 2007
Date of Patent:
November 30, 2010
Assignee:
Advent Technologies SA
Inventors:
Maria Geormezi, Valadoula Deimede, Nora Gourdoupi, Joannis Kallitsis
Abstract: High temperature polymer electrolyte membranes bearing pyridine and tetramethyl biphenyl moieties are provided. Preferred polymers can exhibit good mechanical properties, high thermal and oxidative stability and high doping ability with strong acids. Further provided are MEA on PEMFC type single cells.
Abstract: Featured are novel heterocycle substituted hydroquinones, aromatic copolymers and homopolymers bearing main and side chain polar pyridine units. These polymers exhibit good mechanical properties, high thermal and oxidative stability, high doping ability and high conductivity values. These novel polymers can be used in the preparation and application of MEA on PEMFC type single cells. The combination of the above mentioned properties indicate the potential of the newly prepared materials to be used as electrolytes in high temperature PEM fuel cells.
Abstract: Featured are novel heterocycle substituted hydroquinones, aromatic copolymers and homopolymers bearing main and side chain polar pyridine units. These polymers exhibit good mechanical properties, high thermal and oxidative stability, high doping ability and high conductivity values. These novel polymers can be used in the preparation and application of MEA on PEMFC type single cells. The combination of the above mentioned properties indicate the potential of the newly prepared materials to be used as electrolytes in high temperature PEM fuel cells.
Abstract: New aromatic polyether type copolymers bearing main chain pyridine and side chain pyridine or pyrimidine units, which exhibit good mechanical properties, high thermal and oxidative stability, high doping ability and high conductivity values. The polymers are useful in the preparation and application of MEA on PEMFC type single cells. The polymers are, further, particularly suitable for use in high temperature PEM fuel cells.
Abstract: The subject invention relates to the development and characterization of a new series of poly (arylene ether) copolymers containing pyridine and biphenyl or hydroquinone moieties. Preferred polymers can exhibit very good mechanical properties, high thermal and oxidative stability and high doping ability with strong acids. The invention further relates to the preparation and application of MEA on PEMFC type single cells.
Type:
Application
Filed:
May 24, 2007
Publication date:
July 3, 2008
Applicant:
Advent Technologies SA
Inventors:
Maria Geormezi, Valadoula Deimede, Nora Gourdoupi, Joannis Kallitsis
Abstract: Featured are novel heterocycle substituted hydroquinones, aromatic copolymers and homopolymers bearing main and side chain polar pyridine units. These polymers exhibit good mechanical properties, high thermal and oxidative stability, high doping ability and high conductivity values. These novel polymers can be used in the preparation and application of MEA on PEMFC type single cells. The combination of the above mentioned properties indicate the potential of the newly prepared materials to be used as electrolytes in high temperature PEM fuel cells.
Abstract: High temperature polymer electrolyte membranes bearing pyridine and tetramethyl biphenyl moieties are provided. Preferred polymers can exhibit good mechanical properties, high thermal and oxidative stability and high doping ability with strong acids. Further provided are MEA on PEMFC type single cells.