Abstract: Liquid cooling station comprises at least one pump and at least one motor connected to the pump for operating the pump to circulate cooling liquid between the cooling station and an object to be cooled, a first cooling liquid outlet port for supplying the cooling liquid towards the object to be cooled and a first cooling liquid inlet port for receiving the cooling liquid from the object to be cooled. The liquid cooling station further comprises at least one connection block, which comprises at least one first cavity for receiving an operating part of the pump, at least one second cavity for an additional operational part, the first cooling liquid inlet and outlet ports and an internal channel system connecting the first cavity to the first cooling liquid inlet and outlet ports.
Type:
Grant
Filed:
November 17, 2016
Date of Patent:
September 10, 2019
Assignee:
ADWATEC OY
Inventors:
Arto Verronen, Mika Siitonen, Jorma Terävä
Abstract: Liquid cooling station comprises at least one pump and at least one motor connected to the pump for operating the pump to circulate cooling liquid between the cooling station and an object to be cooled, a first cooling liquid outlet port for supplying the cooling liquid towards the object to be cooled and a first cooling liquid inlet port for receiving the cooling liquid from the object to be cooled. The liquid cooling station further comprises at least one connection block, which comprises at least one first cavity for receiving an operating part of the pump, at least one second cavity for an additional operational part, the first cooling liquid inlet and outlet ports and an internal channel system connecting the first cavity to the first cooling liquid inlet and outlet ports.
Type:
Application
Filed:
November 17, 2016
Publication date:
May 25, 2017
Applicant:
Adwatec Oy
Inventors:
Arto Verronen, Mika Siitonen, Jorma Terävä
Abstract: An arrangement and a method are provided for cooling liquid-cooled electronics. The arrangement includes a pipe system, said pipe system including receiving and exit coolant flow pipes for connecting the arrangement to a liquid-cooling system of said liquid-cooled electronics, inlet and outlet coolant flow pipes for connecting the arrangement to a heat exchanger arrangement, and an expansion tank connected to the coolant flow pipes. The arrangement further includes a coolant level transmitter arranged to detect the amount of the coolant in the expansion tank, a temperature measure arrangement arranged for measuring temperature of the coolant in the arrangement, and a leakage control system. The leakage control system includes a calculator for calculating a temperature corrected reference value for the amount of the coolant in the expansion tank and for calculating a temperature corrected coolant volume by using said temperature corrected reference value.