Abstract: A processor receives requests for content items and identifies a first subset of machine learning (ML) models that satisfy a reliability criterion and a second subset of ML models that fail to satisfy the reliability criterion, wherein each ML model is associated with a respective content template and is trained to output a probability that a target associated with an input set of characteristics would perform a target action responsive to being presented with a content item generated based on the respective associated content template. For each request in a first group, the processor inputs the respective set of characteristics associated with the request into each ML model of the first subset, selects a content template, and generates a content item based on the selected content template. For each request in the second group, the processor generates a content item based on a content template associated with the second subset.
Type:
Grant
Filed:
March 26, 2020
Date of Patent:
September 6, 2022
Assignee:
Adxcel Inc.
Inventors:
Yuri Khidekel, Mikhail Zaleshin, Vladimir Bashmakov
Abstract: A method of machine learning includes performing dimensionality reduction on a parameter space by performing initial tests to determine scores for a plurality of parameter values in the parameter space, determining aggregate scores for a plurality of parameter value combinations, determining a ranking of the plurality of parameter value combinations based on the aggregate scores, and performing cluster analysis on the plurality of parameter value combinations to determine a set having highest aggregate scores. The method further includes performing additional tests, wherein each additional test is for a parameter value combination in the set. For each such parameter value combination, a probability of achieving a key performance indicator (KPI) is computed. Cluster analysis is then performed to determine a first subset of the set having highest probabilities of achieving the KPI. An operation is then performed on the first subset.
Abstract: A method of machine learning includes performing dimensionality reduction on a parameter space by performing initial tests to determine scores for a plurality of parameter values in the parameter space, determining aggregate scores for a plurality of parameter value combinations, determining a ranking of the plurality of parameter value combinations based on the aggregate scores, and performing cluster analysis on the plurality of parameter value combinations to determine a set having highest aggregate scores. The method further includes performing additional tests, wherein each additional test is for a parameter value combination in the set. For each such parameter value combination, a probability of achieving a key performance indicator (KPI) is computed. Cluster analysis is then performed to determine a first subset of the set having highest probabilities of achieving the KPI. An operation is then performed on the first subset.