Abstract: A network device of a subnet determines predictive roaming information for a wireless client. Predictive roaming information can identify the wireless client and a home network subnet of the wireless client. The network device provides predictive roaming information associated with a wireless client to neighboring subnets. Neighboring subnets store received predictive roaming information, and use the predictive roaming information if the wireless client roams to them.
Abstract: A network device of a subnet determines predictive roaming information for a wireless client. Predictive roaming information can identify the wireless client and a home network subnet of the wireless client. The network device provides predictive roaming information associated with a wireless client to neighboring subnets. Neighboring subnets store received predictive roaming information, and use the predictive roaming information if the wireless client roams to them.
Abstract: Wireless access points detect neighboring wireless access points in different subnets. Upon connecting with a wireless client, a wireless access point determines predictive roaming information for the wireless client. Predictive roaming information identifies the wireless client; its home network subnet; and includes connection information associated with the wireless client. The wireless access point forwards the predictive roaming information associated with a wireless client to neighboring wireless access points while the wireless client is still connected with the wireless access point. Neighboring wireless access points store received predictive roaming information. Upon connecting with a wireless client, a neighboring wireless access point determines if the wireless client matches the stored predictive roaming information.
Abstract: Airtime usage may be used as a factor in controlling network traffic flow to and from client devices via a wireless network interface. Received packets or other data are assigned to a quality of service profile. Additionally, a cost value for communicating the received data is determined at least in part based on an actual or estimated airtime usage for the received packet. The cost value is used to allocate wireless network airtime to data. The allocation of wireless network airtime may be varied dynamically based on operating conditions. The cost value may be based on factors including the airtime used to communicate data; whether the data is a retransmission; and wireless network overhead. The cost value of data may also be different depending on whether the data is being sent from a client device or to a client device.
Type:
Grant
Filed:
January 21, 2009
Date of Patent:
July 9, 2013
Assignee:
Aerohive Networks, Inc.
Inventors:
Peter Wu, Sreekanth Reddy, Jianlin Zeng, Changming Liu
Abstract: A method of intelligently sorting packets/datagrams for sending through appropriate branches of a N-way split VPN tunnel according to embodiments of the present invention allow for efficient movement of network traffic to and from a remote network location. Intelligent sorting may be based on a wide range of criteria in order to implement different policies. For example, datagrams may be sorted for sending through the branches of a 3-way split tunnel so that all traffic from a remote network location ultimately destined to servers at a central location may be sent via a secure VPN tunnel, all traffic that matches a “white-list” of trusted external sites may be sent directly to and from these sites to the remote network location, and all other traffic may be redirected through a Web service that scrubs and filters the traffic to/from questionable sites.
Abstract: Networking as a Service (NaaS) delivers network services using remote appliances controlled by a hosted, multi-tenant management system. The system may include a heartbeating process for communication between a web-based server and appliances, in which the appliances periodically contact the management system on the server. The heartbeating process allows the appliances to maintain a completely up-to-date configuration. Furthermore, heartbeating allows for comprehensive monitoring of appliances and for software distribution. The system may also include means for authenticating appliances, without the need for pre-installed PSKs or certificates.
Type:
Grant
Filed:
January 21, 2009
Date of Patent:
January 1, 2013
Assignee:
Aerohive Networks, Inc.
Inventors:
Carl Steven Mower, Matthew Alan Palmer, Steven Couch Mayhew
Abstract: Networking as a Service (NaaS) delivers network services using remote appliances controlled by a hosted, multi-tenant management system. The system may include a heartbeating process for communication between a web-based server and appliances, in which the appliances periodically contact the management system on the server. The heartbeating process allows the appliances to maintain a completely up-to-date configuration. Furthermore, heartbeating allows for comprehensive monitoring of appliances and for software distribution. The system may also include means for authenticating appliances, without the need for pre-installed PSKs or certificates.
Type:
Application
Filed:
September 4, 2012
Publication date:
December 27, 2012
Applicant:
Aerohive Networks, Inc.
Inventors:
Carl Steven MOWER, Matthew Alan Palmer, Steven Couch Mayhew
Abstract: A method of configuring a networking device comprises: collecting data regarding the networking device; conveying the data to a remote server; selecting configuration slice instances based on the data using the server, wherein templates for the slice instances are stored on the server; compiling the configuration slice instances using the server; and delivering the compiled configuration slice instances to the networking device; wherein the slice instances are coherent sub-sections of configuration settings for the networking device.
Abstract: Wireless access points detect neighboring wireless access points in different subnets. Upon connecting with a wireless client, a wireless access point determines predictive roaming information for the wireless client. Predictive roaming information identifies the wireless client; its home network subnet; and includes connection information associated with the wireless client. The wireless access point forwards the predictive roaming information associated with a wireless client to neighboring wireless access points while the wireless client is still connected with the wireless access point. Neighboring wireless access points store received predictive roaming information. Upon connecting with a wireless client, a neighboring wireless access point determines if the wireless client matches the stored predictive roaming information.
Abstract: A method and corresponding system for providing for recovering from a failure of a wired link used for communication between the first access point and a wired network. The first access point has at least two radios including a first radio and a second radio each for providing a wireless communications link. The method including selectively configuring the radios in an access mode for enabling a communications path with a corresponding client node to enable each client node to have a communication path via the first access point to the wired network, wherein the first and second radios are enabled to be associated with a first and second client node, respectively. The method and system includes providing communications paths for the client nodes to the wired network in response to detection of loss of the wired link to the first access point by selectively reconfiguring the second radio to a backhaul mode.