Patents Assigned to Aeva, Inc.
  • Patent number: 11715929
    Abstract: Embodiments of the present disclosure include method for sequentially mounting multiple semiconductor devices onto a substrate having a composite metal structure on both the semiconductor devices and the substrate for improved process tolerance and reduced device distances without thermal interference. The mounting process causes “selective” intermixing between the metal layers on the devices and the substrate and increases the melting point of the resulting alloy materials.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: August 1, 2023
    Assignee: Aeva, Inc.
    Inventors: Zhizhong Tang, Pradeep Srinivasan, Kevin Masuda, Wenjing Liang
  • Patent number: 11710297
    Abstract: A system and method for detecting a potential match between a candidate facial image and a dataset of facial images is described. Some implementations of the invention determine whether a candidate facial image (or multiple facial images) of a person taken, for example, at point of entry corresponds to one or more facial images stored in a dataset of persons of interest (e.g., suspects, criminals, terrorists, employees, VIPs, “whales,” etc.). Some implementations of the invention detect potential fraud in a dataset of facial images. In a first form of potential fraud, a same facial image is associated with multiple identities. In a second form of potential fraud, different facial images are associated with a single identity, as in the case, for example, of identity theft. According to various implementations of the invention, spectral clustering techniques are used to determine a likelihood that pairs of facial images (or pairs of facial image sets) correspond to the person or different persons.
    Type: Grant
    Filed: January 25, 2020
    Date of Patent: July 25, 2023
    Assignee: Aeva, Inc.
    Inventor: Christopher D. Roller
  • Patent number: 11709240
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes a laser source configured to emit a laser beam in a first direction. The apparatus also includes lensing optics configured to pass a first portion of the laser beam in the first direction toward a target, return a second portion of the laser beam into a return path as a local oscillator signal, and return a target signal into the return path. The apparatus also includes a quarter-wave plate configured to polarize the laser beam headed in the first direction and polarize the target signal returned through the lensing optics. The apparatus also includes a polarization beam splitter configured to pass non-polarized light through the beam splitter in the first direction and reflect polarized light in a second direction different than the first direction, wherein the polarization beam splitter is further configured to enable interference between the local oscillator signal and the target signal to generate a mixed signal.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: July 25, 2023
    Assignee: Aeva, Inc.
    Inventors: Mina Rezk, Neal N. Oza, Keith Gagne, Omer P. Kocaoglu
  • Patent number: 11698444
    Abstract: A LiDAR system includes an optical source to emit an optical beam, an optical window to reflect a first portion of the optical beam to generate an LO signal, and an optical scanner to transmit a second portion of the optical beam to a target to scan the target to generate a target return signal. The LiDAR system includes a birefringent crystal plate to transmit the LO signal and the target return signal to a PD and shift the LO signal and the target return signal by different displacements to increase a percentage of an overlap of the LO signal and the target return signal on a detection plane of the PD. The LiDAR system includes the PD to mix the target return signal with the LO signal on the detection plane of the PD to generate a heterodyne signal to extract range and velocity information of the target.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: July 11, 2023
    Assignee: Aeva, Inc.
    Inventors: Ashwin Kumar Samarao, Oguzhan Avci, Behsan Behzadi
  • Publication number: 20230213653
    Abstract: A system uses range and Doppler velocity measurements from a lidar system and images from a video system to estimate a six degree-of-freedom trajectory (6DOF) of a target. The 6DOF transformation parameters are used to transform multiple images to the frame time of a selected image, thus obtaining multiple images at the same frame time. These multiple images may be used to increase a resolution of the image at each frame time, obtaining the collection of the superresolution images.
    Type: Application
    Filed: August 8, 2022
    Publication date: July 6, 2023
    Applicant: Aeva, Inc.
    Inventors: Richard L. Sebastian, Anatoley T. Zheleznyak
  • Patent number: 11693101
    Abstract: A method including receiving, responsive to a transmission of a plurality of optical beams into an environment including a target, a plurality of returned optical beams associated with the target. The method includes generating a plurality of points from the plurality of returned optical beams, wherein each one of the plurality of points respectively corresponds to one of the plurality of returned optical beams; selecting a first point from the plurality of points and a second point from the plurality of points. The method includes identifying, by a processor, an orientation of the first point relative to the FMCW LIDAR system based on the second point from the plurality of points. The method includes computing an orientation of the target relative to the FMCW LIDAR system based on the orientation of the first point; and generating a point cloud based on the orientation of the target.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: July 4, 2023
    Assignee: Aeva, Inc.
    Inventors: Da An, Jose Krause Perin, Kumar Bhargav Viswanatha, Mina Rezk
  • Patent number: 11693118
    Abstract: A light detection and ranging (LIDAR) technique that includes dividing the field of view into a grid including a plurality of cells. The technique also includes generating a baseband signal based on a returned optical beam. The baseband signal includes a plurality of peaks corresponding with up-chirps and down-chirps in the transmitted signal. A plurality of points are computed based on the peaks. Each point includes information describing a range and a velocity and corresponds to a respective cell. A point confidence score is computed for each point, and a cell confidence score is computed for each cell based on the point confidence scores of the points within the cell. Each point can be accepted or rejected for inclusion in a point cloud based on the point confidence score for the point and the cell confidence scores for the plurality of cells.
    Type: Grant
    Filed: September 14, 2022
    Date of Patent: July 4, 2023
    Assignee: Aeva, Inc.
    Inventors: James Nakamura, Krishna Toshniwal, Jose Krause Perin, Kumar Bhargav Viswanatha
  • Patent number: 11693094
    Abstract: A method to compensate for phase impairments in a light detection and ranging (LIDAR) system includes transmitting a first optical beam towards a target, receiving a second optical beam from the target to produce a received optical beam; and generating a digitally-sampled target signal using a local oscillator (LO) beam, a first photo-detector and the received optical beam. The method also includes generating a digitally-sampled reference signal using a reference beam transmitted through a fiber delay device and a second photo-detector, and estimating one or more phase impairments in the LiDAR system using the digitally-sampled reference signal to produce one or more estimated phase impairments. The method also includes performing a first correction on a first phase impairment introduced into the digitally-sampled target signal by the LO beam; performing a second correction on a second phase impairment introduced into the digitally-sampled target signal by the received optical beam.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: July 4, 2023
    Assignee: Aeva, Inc.
    Inventors: Kumar Bhargav Viswanatha, Jose Krause Perin, Rajendra Tushar Moorti, Mina Rezk
  • Patent number: 11681020
    Abstract: A system including an optical scanner to transmit an optical beam towards an object. The system includes a first optical element to receive a returned reflection having a lag angle; and steer the returned reflection to generate a first steered beam. The system includes a beam steering unit to receive the first steered beam, wherein the first steered beam is propagating at a first beam angle; and steer, the first steered beam based on an array voltage to generate a second steered beam at a first location on a photodetector. The system includes a processor to adjust the array voltage to cause the beam steering unit to steer the second steered beam from the first location on the photodetector to a second location on the photodetector to compensate for the lag angle.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: June 20, 2023
    Assignee: Aeva, Inc.
    Inventor: Shijun Xiao
  • Patent number: 11675085
    Abstract: A system and method include receiving a first beam pattern from an optical source that comprises a plurality of optical beams transmitted towards a target causing different spaces to form between each optical beam. The system and method include measuring a vertical angle between at least two of the optical beams along a first axis and calculating a second beam pattern based on the vertical angle and a pivot point that causes the optical beams to be transmitted towards the target with substantially uniform spacing. The system and method include adjusting, at the pivot point, one or more components to form the second beam pattern to adjust the plurality of different spaces to the substantially uniform spacing for transmission towards the target. The system and method include receiving return optical beams from the target to produce a plurality of points to form the point cloud.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: June 13, 2023
    Assignee: Aeva, Inc.
    Inventors: Cameron Howard, Sawyer Isaac Cohen, Keith Gagne, Bradley Scot Levin, Pierre Hicks
  • Patent number: 11672420
    Abstract: Detecting position information related to a face, and more particularly to an eyeball in a face, using a detection and ranging system, such as a Radio Detection And Ranging (“RADAR”) system, or a Light Detection And Ranging (“LIDAR”) system. The position information may include a location of the eyeball, translational motion information related to the eyeball (e.g., displacement, velocity, acceleration, jerk, etc.), rotational motion information related to the eyeball (e.g., rotational displacement, rotational velocity, rotational acceleration, etc.) as the eyeball rotates within its socket.
    Type: Grant
    Filed: October 4, 2020
    Date of Patent: June 13, 2023
    Assignee: Aeva, Inc.
    Inventors: Richard L. Sebastian, Kendall L. Belsley
  • Publication number: 20230168085
    Abstract: A system uses range and Doppler velocity measurements from a lidar system and images from a video system to estimate a six degree-of-freedom trajectory of a target. The system estimates this trajectory in two stages: a first stage in which the range and Doppler measurements from the lidar system along with various feature measurements obtained from the images from the video system are used to estimate first stage motion aspects of the target (i.e., the trajectory of the target); and a second stage in which the images from the video system and the first stage motion aspects of the target are used to estimate second stage motion aspects of the target. Once the second stage motion aspects of the target are estimated, a three-dimensional image of the target may be generated.
    Type: Application
    Filed: July 4, 2022
    Publication date: June 1, 2023
    Applicant: Aeva, Inc,
    Inventors: Richard L. Sebastian, Anatoley T. ZHELEZNYAK
  • Patent number: 11662444
    Abstract: The LiDAR system includes a coherent receiver disposed in a reference path. The coherent receiver includes a 90° optical hybrid to receive a portion of an optical beam along the reference path and a local oscillator (LO) signal to generate multiple output signals. The coherent receiver includes a first photodetector to receive a first and a second output signal to generate a first mixed signal, and a second photodetector to receive a third and a fourth output signal to generate a second mixed signal. The LiDAR system further includes a processor to combine the first mixed signal and the second mixed signal to generate a combined reference signal to suppress a negative image of a reference beat frequency signal to estimate a phase noise of the optical source to determine range and velocity information of the target.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: May 30, 2023
    Assignee: Aeva, Inc.
    Inventors: Ryan Wayne Going, Kumar Bhargav Viswanatha, Pradeep Srinivasan, Srikanth Kuthuru
  • Patent number: 11650316
    Abstract: A light detection and ranging (LiDAR) core is provided that transmits optical beams, and detects return optical beams. The transmitted optical beams are antiphase chirps that sweep a frequency band, and the sweep of the antiphase chirps includes multiple sub-sweeps over respective sub-bands of the frequency band. The system routes the transmitted optical beams that are launched towards a target, and receives light incident upon the target into the return optical beams. The system simultaneously measures and thereby produces multiple simultaneous measurements of first and second beat frequencies per sweep of the antiphase chirps, from the transmitted and returned optical beams, and includes a simultaneous measurement of the first and second beat frequencies per sub-sweep of the multiple sub-sweeps. And the system determines a range and velocity of the target from the multiple simultaneous measurements of the first and second beat frequencies per sweep of the antiphase chirps.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 16, 2023
    Assignee: Aeva, Inc.
    Inventors: Mina Rezk, Neeraj Tayal
  • Patent number: 11650320
    Abstract: A system uses range and Doppler velocity measurements from a lidar system and images from a video system to estimate a six degree-of-freedom trajectory of a target and generate a three-dimensional image of the target. The system may refine the three-dimensional image by reducing the stochastic components in the transformation parameters between video frame times.
    Type: Grant
    Filed: March 20, 2021
    Date of Patent: May 16, 2023
    Assignee: Aeva, Inc.
    Inventors: Anatoley T. Zheleznyak, Richard L. Sebastian
  • Publication number: 20230103569
    Abstract: An optical sub-assembly includes a diode submount structure, a diode mounted to the diode submount, and a thermoelectric cooler (TEC). The TEC is in thermal contact with the diode, and the diode is positioned between the diode submount structure and the TEC.
    Type: Application
    Filed: October 5, 2021
    Publication date: April 6, 2023
    Applicant: AEVA, INC.
    Inventors: Zhizhong Tang, Wenjing Liang, Kevin Kinichi Masuda, Pradeep Srinivasan
  • Patent number: 11619726
    Abstract: A system uses range and Doppler velocity measurements from a lidar subsystem and images from a video subsystem to estimate a six degree-of-freedom trajectory of a target. The video subsystem and the lidar subsystem may be aligned with one another by mapping the measurements of various facial features obtained by each of the subsystems to one another.
    Type: Grant
    Filed: April 20, 2019
    Date of Patent: April 4, 2023
    Assignee: Aeva, Inc.
    Inventors: Anatoley T. Zheleznyak, Chris Roller, Gavin Rosenbush, Richard L. Sebastian
  • Patent number: 11609334
    Abstract: A light detection and ranging (LIDAR) system includes an optical receiver to generate a plurality of data points associated with one or more return beams from a target of the LIDAR system, a processor, and a memory. The memory stores the plurality of data points and stores instructions that cause the LIDAR system to: perform a processing operation on a first data point of the plurality of data points to determine a second data point of the plurality of data points with which to modify the first data point; generate, as output of the processing operation, a first index to a first memory location of the first data point and a second index to a second memory location of the second data point; and generate a point cloud corresponding to the target based on the first data point as modified by the second data point.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: March 21, 2023
    Assignee: Aeva, Inc.
    Inventors: Khachatur Armenyan, Youye Xie, Jose Krause Perin, Amol Gole
  • Patent number: 11610286
    Abstract: A set of POIs of a point cloud are received at a first filter, where each POI of the set of POIs comprises one or more points. Each POI of the set of POIs is filtered. A set of neighborhood points of a POI is selected. A metric for the set of neighborhood points is computed. Based on the metric, whether to accept the POI, modify the POI, reject the POI, or transmit the POI to a second filter, to extract at least one of range or velocity information related to the target is determined. Provided the POI is accepted or modified, the POI is transmitted to a filtered point cloud; provided the POI is rejected, the POI is prevented from reaching the filtered point cloud; provided the POI is not accepted, modified, or rejected, the POI is transmitted to a second filter.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: March 21, 2023
    Assignee: Aeva, Inc.
    Inventors: Krishna Toshniwal, Mina Rezk, Bruno Hexsel, Kumar Bhargav Viswanatha, Jose Krause Perin, Rajendra Tushar Moorti, James Nakamura
  • Patent number: 11585926
    Abstract: A light detection and ranging (LIDAR) system to transmit optical beams including at least two up-chirp signals and at least two down-chirp signals toward targets in a field of view of the LIDAR system and receive returned signals of the up-chirp and the down-chirp as reflected from the targets. The LIDAR system generates a baseband signal in a frequency domain of the returned signals of the at least two up-chirp signals and the at least two down-chirp signals. The baseband signal includes a first set of peaks associated with the at least one up-chirp signal and a second set of peaks associated with the at least one down-chirp signal. The LIDAR system determines the target location using the first set of peaks and the second set of peaks.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: February 21, 2023
    Assignee: Aeva, Inc.
    Inventors: Kumar Bhargav Viswanatha, Carlo Giustini, Esha John, Jose Krause Perin, James Nakamura, Rajendra Tushar Moorti