Patents Assigned to Aeye, Inc.
  • Patent number: 11474214
    Abstract: A lidar system can include a lidar transmitter and a lidar receiver, where the lidar transmitter controllably transmits a pulse burst toward a target in a field of view and where the lidar receiver resolves an angle to the target based on returns from the pulse burst. The pulse burst can include a first pulse fired at a first shot angle and a second pulse fired at a second shot angle.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: October 18, 2022
    Assignee: AEYE, Inc.
    Inventors: Jordan Greene, Joel Benscoter, Luis Dussan, Allan Steinhardt, Philippe Feru, Igor Polishchuk, Alex Liang
  • Patent number: 11474213
    Abstract: A lidar system that includes a laser source can be controlled to fire laser pulse shots from the laser source at a variable rate of firing those laser pulse shots. The fired laser pulse shots can include scheduled laser pulse shots that are targeted at range points in the field of view. The fired laser pulse shots can also include marker shots that bleed energy out of the laser source in order to avoid reaching a threshold for available energy in the laser source and/or regulate energy amounts for the targeted laser pulse shots. A laser energy model that models how much energy is available from the laser source for laser pulse shots over time can be used to model future available energies for the laser source and determine whether any marker shots should be fired.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: October 18, 2022
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Alex Liang, Igor Polishchuk, Allan Steinhardt
  • Patent number: 11467263
    Abstract: A lidar system comprises an optical amplification laser source, a mirror, and a control circuit. The optical amplification laser source can generate laser pulses for transmission as laser pulses shots into a field of view, the optical amplification laser source comprising a seed laser, a pump laser, and an optical amplifier. The mirror can be is scannable to control where the laser pulse shots are fired into the field of view, and the control circuit can control the seed laser to adjust its seed energy to control energy levels for a first laser pulse shot and a second laser pulse shot within a pulse burst to be transmitted from the optical amplification laser source via the mirror.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: October 11, 2022
    Assignee: AEYE, Inc.
    Inventors: Jordan Greene, Joel Benscoter, Luis Dussan, Allan Steinhardt, Philippe Feru, Igor Polishchuk, Alex Liang
  • Patent number: 11460552
    Abstract: A lidar system that includes a variable energy laser source and transmits laser pulses produced by the variable energy laser source toward range points in a field of view can use a laser energy model to model the available energy in the variable energy laser source over time. The timing schedule for laser pulses fired by the lidar system can then be determined using energies that are predicted for the different scheduled laser pulse shots based on the laser energy model. This permits the lidar system to reliably ensure at a highly granular level that each laser pulse shot has sufficient energy to meet operational needs, including when operating during periods of high density/high resolution laser pulse firing. The laser energy model is capable of modeling a variable rate of energy buildup in the variable energy laser source per unit time.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: October 4, 2022
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Alex Liang, Igor Polishchuk, Allan Steinhardt
  • Patent number: 11460553
    Abstract: A lidar system that includes a laser source and a scannable mirror can be controlled to schedule the firing of laser pulse shots at range points in a field of view. A first mirror motion model can be used to govern the scheduling of the laser pulse shots, and a second mirror motion model can be used to govern when firing commands are to be generated for the scheduled laser pulse shots. The first and second mirror motion models model motion of the scannable mirror over time. A system controller can use the first mirror motion model as a coarse mirror motion model for the purpose of shot scheduling, while a beam scanner controller can use the second mirror motion model as a fine mirror motion model for the purposes of generating firing commands for the laser source.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: October 4, 2022
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Alex Liang, Igor Polishchuk, Allan Steinhardt
  • Patent number: 11460556
    Abstract: A lidar system that includes a laser source and transmits laser pulses produced by the laser source toward range points in a field of view via a mirror that scans through a plurality of scan angles can use (1) a laser energy model to model the available energy in the laser source over time and (2) a mirror motion model to model motion of the mirror over time. The mirror can exhibit a variable scan amplitude, and a control circuit can then evaluate whether benefits such as a shorter completion time for firing laser pulse shots at a list of range points can be achieved by changing the mirror's scan amplitude. When making such decisions, the control circuit can take into account a settle time for the variable amplitude mirror that arises from changing the mirror's scan amplitude.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: October 4, 2022
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Il Woong Jung, Alex Liang, Igor Polishchuk, Allan Steinhardt
  • Patent number: 11448734
    Abstract: A lidar system that includes a laser source and transmits laser pulses produced by the laser source toward range points in a field of view via a mirror that scans through a plurality of scan angles can use (1) a laser energy model to model the available energy in the laser source over time and (2) a mirror motion model to model motion of the mirror over time. Time slots for transmitting the targeted laser pulses can be identified using the mirror motion model, and a schedule for these pulses can be determined using energies predicted for the pulses at these time slots according to the laser energy model. Linking the model of mirror motion with the model of laser energy provides highly precise granularity when scheduling laser pulses targeted at specific range points in the field of view.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: September 20, 2022
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Alex Liang, Igor Polishchuk, Allan Steinhardt
  • Patent number: 11442152
    Abstract: A lidar system that includes a laser source and transmits laser pulses produced by the laser source toward range points in a field of view can use a laser energy model to model the available energy in the laser source over time. The timing schedule for laser pulses fired by the lidar system can then be determined using energies that are predicted for the different scheduled laser pulse shots based on the laser energy model. This permits the lidar system to reliably ensure at a highly granular level that each laser pulse shot has sufficient energy to meet operational needs, including when operating during periods of high density/high resolution laser pulse firing. The laser energy model is capable of modeling the energy available for laser pulses in the laser source over very short time intervals (such as 10-100 nanoseconds).
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: September 13, 2022
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Alex Liang, Igor Polishchuk, Allan Steinhardt
  • Patent number: 11327177
    Abstract: Disclosed herein are examples of ladar systems and methods where data about a plurality of ladar returns from prior ladar pulse shots gets stored in a spatial index that associates ladar return data with corresponding locations in a coordinate space to which the ladar return data pertain. This spatial index can then be accessed by a processor to retrieve ladar return data for locations in the coordinate space that are near a range point to be targeted by the ladar system with a new ladar pulse shot. This nearby prior ladar return data can then be analyzed by the ladar system to help define a shot energy for use by the ladar system with respect to the new ladar pulse shot.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: May 10, 2022
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Federico Presutti, Joel David Benscoter
  • Patent number: 11300667
    Abstract: A lidar system that includes a laser source and a scannable mirror can be controlled to maximize the firing of laser pulse shots per scan line of the scannable mirror. For example, a control circuit for the lidar system can (1) process a pool of range points to be targeted with a plurality of shots from the laser source, (2) schedule shots for a single scan of the mirror along the first axis in a given scan direction to target as many of the range points from the pool as permitted by a laser energy model as compared to a plurality of energy requirements relating to the shots, and (3) control a firing of the scheduled shots during the single scan of the mirror in the given scan direction so that the scheduled shots are fired into the field of view toward the targeted range points via the mirror.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: April 12, 2022
    Assignee: AEYE, INC.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Alex Liang, Igor Polishchuk, Naveen Reddy, Allan Steinhardt
  • Patent number: 11300779
    Abstract: Disclosed herein is a compact beam scanner assembly that includes an ellipsoidal reimaging mirror.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: April 12, 2022
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, David R. Demmer, John Stockton, Allan Steinhardt, David Cook
  • Patent number: 11175386
    Abstract: Disclosed herein are various embodiments for a ladar system that includes an adaptive ladar receiver whereby the active pixels in a photodetector array used for reception of ladar pulse returns can be adaptively controlled based at least in part on where the ladar pulses were targeted by the ladar transmitter.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: November 16, 2021
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, David Cook
  • Patent number: 11092676
    Abstract: Disclosed herein are a number of example embodiments that employ controllable delays between successive ladar pulses in order to discriminate between “own” ladar pulse reflections and “interfering” ladar pulses reflections by a receiver. Example embodiments include designs where a sparse delay sum circuit is used at the receiver and where a funnel filter is used at the receiver. Also, disclosed are techniques for selecting codes to use for the controllable delays as well as techniques for identifying and tracking interfering ladar pulses and their corresponding delay codes. The use of a ladar system with pulse deconfliction is also disclosed as part of an optical data communication system.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: August 17, 2021
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, David Cook, Blair B. Lacorte
  • Patent number: 11002857
    Abstract: A ladar transmitter that transmits ladar pulses toward a plurality of range points in a field of view can be controlled to target range points based on any of a plurality of defined shot list frames. Each defined shot list frame can identify various coordinates in the field of view that are to be targeted by a ladar pulses for a given ladar frame. A processor can process data about the field of view such as range data and/or camera data to make selections as to which of the defined shot list frames should be selected for a given frame of ladar data.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 11, 2021
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Joel David Benscoter, Jordan Spencer Greene
  • Patent number: 10921450
    Abstract: A ladar system and related method are disclosed where a ladar transmitter transmits ladar pulses toward a plurality of range points, and a ladar receiver receives ladar returns from the range points, wherein the ladar receiver comprises a photo receiver. A sensor can be used to sense background light levels, and a control circuit can (1) measures the sensed background light levels and (2) provide frequency domain shuttering with respect to the photo receiver based on the measured background light levels.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: February 16, 2021
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, Jordan Spencer Greene, Allen Chi-Luen Wang, Nitin Vyas, Daryoosh Rejaly
  • Patent number: 10908265
    Abstract: Various embodiments are disclosed for improved scanning ladar transmission, including but not limited to an example embodiment where feedback control is used to finely control mirror scan positions.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: February 2, 2021
    Assignee: AEYE, INC.
    Inventor: Luis Carlos Dussan
  • Patent number: 10908262
    Abstract: Disclosed herein is a scanning ladar transmitter that employs an optical field splitter/inverter to improve the gaze characteristics of the ladar transmitter on desirable portions of a scan area. Also disclosed is the use of scan patterns such as Lissajous scan patterns for a scanning ladar transmitter where a phase drift is induced into the scanning to improve the gaze characteristics of the ladar transmitter on desirable portions of the scan area.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: February 2, 2021
    Assignee: AEYE, INC.
    Inventor: Luis Carlos Dussan
  • Patent number: 10782393
    Abstract: Disclosed herein are various embodiment of an adaptive ladar receiver and associated method whereby the active pixels in a photodetector array used for reception of ladar pulse returns can be adaptively controlled based at least in part on where the ladar pulses were targeted. Additional embodiments disclose improved imaging optics for use by the receiver and further adaptive control techniques for selecting which pixels of the photodetector array are used for sensing incident light.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: September 22, 2020
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, David Cook
  • Patent number: 10761196
    Abstract: Disclosed herein are various embodiment of an adaptive ladar receiver and associated method whereby the active pixels in a photodetector array used for reception of ladar pulse returns can be adaptively controlled based at least in part on where the ladar pulses were targeted. Additional embodiments disclose improved imaging optics for use by the receiver and further adaptive control techniques for selecting which pixels of the photodetector array are used for sensing incident light.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: September 1, 2020
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, David Cook
  • Patent number: 10754015
    Abstract: Disclosed herein are various embodiment of an adaptive ladar receiver and associated method whereby the active pixels in a photodetector array used for reception of ladar pulse returns can be adaptively controlled based at least in part on where the ladar pulses were targeted. Additional embodiments disclose improved imaging optics for use by the receiver and further adaptive control techniques for selecting which pixels of the photodetector array are used for sensing incident light.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: August 25, 2020
    Assignee: AEYE, INC.
    Inventors: Luis Carlos Dussan, Allan Steinhardt, David Cook