Patents Assigned to Agar Corporation Inc.
  • Patent number: 11885743
    Abstract: An apparatus and method of inline measurement of low-concentration hydrocarbons overlaps fluorescence, scatter and absorption spectroscopy devices so as to measure scatter and absorption of fluorescing oil and the excited fluorescence itself. The apparatus includes a fitting, an input port, an output port, and a sapphire tube having a hollow interior in fluid connection with the input port and the output port. Flow medium passes through the input port, the sapphire tube, and the output port. The apparatus also includes a light emitter, a first detector, and a second detector. The light emitter can include a lens, an absorption and scatter wavelength emitter, and a fluorescence wavelength emitter. An incident absorption and scatter beam and an incident fluorescence beam from the light emitter and parallel so as to determine free hydrocarbon, dissolved hydrocarbons, and solids in a sample within the sapphire tube.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 30, 2024
    Assignee: Agar Corporation, Inc.
    Inventors: David Farchy, Vikram Siddavaram, Yonathan Dattner
  • Patent number: 11567059
    Abstract: The profiler system and method measure multiphase fluid with or without a container. The profiler includes at least one sensor module. Each sensor module extends a set distance from an upper end to a lower end of the module. This set distance determines proximal and distal measurement zones corresponding to different portions of multiphase fluid. The zones can be aligned within the container to define a sample volume with a relative position from top to bottom within the container. The profiler measures fluid characteristics with location data based on the sample volume or zones so that a profile of the multiphase fluid includes position of the portions of multiphase fluid measured. The safety and accuracy of storage in a container or active flow in a flow connector or open water can be maintained, even as the multiphase fluid dynamically changes while in storage and while in active flow.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: January 31, 2023
    Assignee: Agar Corporation, Inc.
    Inventors: David Farchy, Steven Bates, Efim Metsner, Hector Alfredo Viale-Rigo Capuzzo, Illenny Guevara
  • Patent number: 11161060
    Abstract: An inline process for imparting sonic energy plus a liquid gas separator to a continuous flow of a heterogeneous liquid to de-gassify the liquid and thereby provide for separation and extraction of selected liquid and gas components. The device utilizes a flat plate oriented in the direction of flow within the liquid so as to impart pressure fronts into the liquid to initiate liquid gas separation followed by a line pressure regulation, fluid jet stream, device to impart fluidic shear to fluid jet stream, and a separation vessel to facilitate mass transfer.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: November 2, 2021
    Assignee: AGAR CORPORATION, INC.
    Inventors: Stephen Saint-Vincent, Yancy James Tiller
  • Patent number: 5741977
    Abstract: A high void fraction multi-phase fluid flow meter and method, wherein a first fluid flow path including a multi-phase flow measuring device disposed in series with a liquid flow restrictor is provided in parallel with a second fluid flow path including a gas flow measuring device. The presence of liquid flow in the flow meter is detected. When liquid flow is detected, a valve in the second fluid flow path operates to cut off fluid flow through the second fluid flow path. Otherwise the valve in the second fluid flow path operates to divert gas flow through the second fluid flow path. Alternatively, a negative pressure differential is produced across the second fluid flow path when liquid flow is present, by passing the incoming liquid flow through a jet pump nozzle, to prevent liquid flow into the second fluid flow path. A check valve is then disposed in the second fluid flow path to prevent backflow from the output of the multi-flow measuring device into the second fluid flow path.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: April 21, 1998
    Assignee: Agar Corporation Inc.
    Inventors: Joram Agar, David Farchi
  • Patent number: 5589642
    Abstract: A high void fraction multi-phase fluid flow meter and method, wherein a first fluid flow path including a multi-phase flow measuring device disposed in series with a liquid flow restrictor is provided in parallel with a second fluid flow path including a gas flow measuring device. The presence of liquid flow in the flow meter is detected. When liquid flow is detected, a valve in the second fluid flow path operates to cut off fluid flow through the second fluid flow path. Otherwise the valve in the second fluid flow path operates to divert gas flow through the second fluid flow path. Alternatively, a negative pressure differential is produced across the second fluid flow path when liquid flow is present, by passing the incoming liquid flow through a jet pump nozzle, to prevent liquid flow into the second fluid flow path. A check valve is then disposed in the second fluid flow path to prevent backflow from the output of the multi-flow measuring device into the second fluid flow path.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: December 31, 1996
    Assignee: Agar Corporation Inc.
    Inventors: Joram Agar, David Farchi
  • Patent number: 5551305
    Abstract: An apparatus and method for measuring the flow rates of each component of two-phase flow consisting of a gas and a liquid or three-phase flow consisting of water, oil and gas, including a first volumetric flow-meter stage, and second and third momentum flow meter stages Coupled in a series flow path with the volumetric flow meter stage and in which a velocity ratio between the gas and the liquid in the series flow path is maintained to be one. A processor calculates flow rates of the components of flow by solving volumetric flow and momentum or energy equations defining flow through the first through third stages utilizing a volumetric flow output from the first stage and momentum flux outputs from said second and third stages, and an indicator displays flow of liquid and gas or oil, water and gas components of the flow. To measure three-phase flow, a water-cut meter is provided to determine the amount of water flow, which is then used by the processor to determine the flow of the rest of the liquid.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 3, 1996
    Assignee: Agar Corporation Inc.
    Inventors: David Farchi, Joram Agar
  • Patent number: 5503004
    Abstract: Disclosed is a method and apparatus for measuring the percentages of oil and water present in an oil/water mixture. By measuring the energy absorption properties of the oil/water mixture, the percentages of oil and water present in the oil/water mixture can be determined regardless of whether the oil or the water is in the continuous phase and regardless of what the relative proportions of water and oil are. Measuring the energy absorption properties of the oil/water mixture yields a current output which can be plotted on one of two distinct, empirically or theoretically derived data curves. One of the data curves represents oil being in the continuous phase and the other data curve represents water being in the continuous phase. A comparator is used to determine whether the oil or the water is in the continuous phase to thereby select the proper data curve on which the energy absorption is plotted.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: April 2, 1996
    Assignee: Agar Corporation Inc.
    Inventor: Joram Agar
  • Patent number: 5461930
    Abstract: An apparatus and method for measuring the flow rates of each component of two-phase flow consisting of a gas and a liquid or three-phase flow consisting of water, oil and gas, including a first volumetric flow meter stage, and second and third momentum flow meter stages coupled in a series flow path with the volumetric flow meter stage and in which a velocity ratio between the gas and the liquid in the series flow path is maintained to be one. A processor calculates flow rates of the components of flow by solving volumetric flow and momentum or energy equations defining flow through the first through third stages utilizing a volumetric flow output from the first stage and momentum flux outputs from said second and third stages, and an indicator displays flow of liquid and gas or oil, water and gas components of the flow. To measure three-phase flow, a water-cut meter is provided to determine the amount of water flow, which is then used by the processor to determine the flow of the rest of the liquid.
    Type: Grant
    Filed: March 17, 1992
    Date of Patent: October 31, 1995
    Assignee: Agar Corporation Inc.
    Inventors: David Farchi, Joram Agar
  • Patent number: RE36597
    Abstract: An apparatus and method for measuring the flow rates of each component of two-phase flow consisting of a gas and a liquid or three-phase flow consisting of water, oil and gas, including a first volumetric flow meter stage, and second and third momentum flow meter stages coupled in a series flow path with the volumetric flow meter stage and in which a velocity ratio between the gas and the liquid in the series flow path is maintained to be one. A processor calculates flow rates of the components of flow by solving volumetric flow and momentum or energy equations defining flow through the first through third stages utilizing a volumetric flow output from the first stage and momentum flux outputs from said second and third stages, and an indicator displays flow of liquid and gas or oil, water and gas components of the flow. To measure three-phase flow, a water-cut meter is provided to determine the amount of water flow, which is then used by the processor to determine the flow of the rest of the liquid.
    Type: Grant
    Filed: September 25, 1997
    Date of Patent: March 7, 2000
    Assignee: Agar Corporation Inc.
    Inventors: Joram Agar, David Farchi